RESUMO
Understanding the hallmarks of the immune response to SARS-CoV-2 is critical for fighting the COVID-19 pandemic. We assessed antibody and T cell reactivity in convalescent COVID-19 patients and healthy donors sampled both prior to and during the pandemic. Healthy donors examined during the pandemic exhibited increased numbers of SARS-CoV-2-specific T cells, but no humoral response. Their probable exposure to the virus resulted in either asymptomatic infection without antibody secretion or activation of preexisting immunity. In convalescent patients, we observed a public and diverse T cell response to SARS-CoV-2 epitopes, revealing T cell receptor (TCR) motifs with germline-encoded features. Bulk CD4+ and CD8+ T cell responses to the spike protein were mediated by groups of homologous TCRs, some of them shared across multiple donors. Overall, our results demonstrate that the T cell response to SARS-CoV-2, including the identified set of TCRs, can serve as a useful biomarker for surveying antiviral immunity.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Epitopos de Linfócito T/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Adolescente , Adulto , Anticorpos Antivirais/metabolismo , Infecções Assintomáticas , Células Cultivadas , Convalescença , Epitopos de Linfócito T/imunologia , Feminino , Humanos , Imunidade , Memória Imunológica , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Pandemias , Receptores de Antígenos de Linfócitos T/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto JovemRESUMO
T cells play a crucial role in combatting SARS-CoV-2 and forming long-term memory responses to this coronavirus. The emergence of SARS-CoV-2 variants that can evade T cell immunity has raised concerns about vaccine efficacy and the risk of reinfection. Some SARS-CoV-2 T cell epitopes elicit clonally restricted CD8+ T cell responses characterized by T cell receptors (TCRs) that lack structural diversity. Mutations in such epitopes can lead to loss of recognition by most T cells specific for that epitope, facilitating viral escape. Here, we studied an HLA-A2-restricted spike protein epitope (RLQ) that elicits CD8+ T cell responses in COVID-19 convalescent patients characterized by highly diverse TCRs. We previously reported the structure of an RLQ-specific TCR (RLQ3) with greatly reduced recognition of the most common natural variant of the RLQ epitope (T1006I). Opposite to RLQ3, TCR RLQ7 recognizes T1006I with even higher functional avidity than the WT epitope. To explain the ability of RLQ7, but not RLQ3, to tolerate the T1006I mutation, we determined structures of RLQ7 bound to RLQ-HLA-A2 and T1006I-HLA-A2. These complexes show that there are multiple structural solutions to recognizing RLQ and thereby generating a clonally diverse T cell response to this epitope that assures protection against viral escape and T cell clonal loss.
Assuntos
COVID-19 , Receptores de Antígenos de Linfócitos T , SARS-CoV-2 , Humanos , Linfócitos T CD8-Positivos , COVID-19/imunologia , Epitopos de Linfócito T , Antígeno HLA-A2 , Receptores de Antígenos de Linfócitos T/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismoRESUMO
Despite measures taken world-wide, the coronavirus disease 2019 (COVID-19) pandemic continues. Because efficient antiviral drugs are not yet widely available, vaccination is the best option to control the infection rate. Although this option is obvious in the case of COVID-19-naive individuals, it is still unclear when individuals who have recovered from a previous SARS-CoV-2 infection should be vaccinated and whether the vaccination raises immune responses against the coronavirus and its novel variants. In this study, we collected peripheral blood from 84 healthy human donors of different COVID-19 status who were vaccinated with the Sputnik Light vaccine and measured the dynamics of the Ab and T cell responses, as well as the virus-neutralizing activity (VNA) in serum, against two SARS-CoV-2 variants, B.1.1.1 and B.1.617.2. We showed that vaccination of individuals previously exposed to the virus considerably boosts the existing immune response. In these individuals, receptor-binding domain (RBD)-specific IgG titers and VNA in serum were already elevated on the 7th day after vaccination, whereas COVID-19-naive individuals developed the Ab response and VNA mainly 21 d postvaccination. Additionally, we found a strong correlation between RBD-specific IgG titers and VNA in serum, and according to these data vaccination may be recommended when the RBD-specific IgG titers drop to 142.7 binding Ab units/ml or below. In summary, the results of the study demonstrate that vaccination is beneficial for both COVID-19-naive and recovered individuals, especially since it raises serum VNA against the B.1.617.2 variant, one of the five SARS-CoV-2 variants of concern.
Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , Vacinas Sintéticas/imunologia , Adulto , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Domínios Proteicos/imunologia , Federação Russa , Linfócitos T/imunologia , VacinaçãoRESUMO
Peptides are widely used for the diagnostics, prevention, and therapy of certain human diseases. How useful can they be for the disease caused by the SARS-CoV-2 coronavirus? In this review, we discuss the possibility of using synthetic and recombinant peptides and polypeptides for prevention of COVID-19 via blocking the interaction between the virus and its main receptor ACE2, as well as components of antiviral vaccines, in particular, against new emerging virus variants.
Assuntos
COVID-19 , Enzima de Conversão de Angiotensina 2 , Antivirais/uso terapêutico , Humanos , Peptídeos/uso terapêutico , SARS-CoV-2RESUMO
The clinical course of the new coronavirus disease 2019 (COVID-19) has shown that patients with chronic lymphocytic leukemia (CLL) are characterized by a high mortality rate, poor response to standard treatment, and low virus-specific antibody response after recovery and/or vaccination. To date, there are no data on the safety and efficacy of the combined vector vaccine Sputnik V in patients with CLL. Here, we analyzed and compared the magnitudes of the antibody and T cell responses after vaccination with the Sputnik V vaccine among healthy donors and individuals with CLL with different statuses of preexposure to coronavirus. We found that vaccination of the COVID-19-recovered individuals resulted in the boosting of pre-existing immune responses in both healthy donors and CLL patients. However, the COVID-19-naïve CLL patients demonstrated a considerably lower antibody response than the healthy donors, although they developed a robust T cell response. Regardless of the previous infection, the individuals over 70 years old demonstrated a decreased response to vaccination, as did those receiving anti-CD20 therapy. In summary, we showed that Sputnik V, like other vaccines, did not induce a robust antibody response in individuals with CLL; however, it provided for the development of a significant anti-COVID-19 T cell response.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Leucemia Linfocítica Crônica de Células B , Idoso , Humanos , Anticorpos Antivirais , COVID-19/prevenção & controle , Linfócitos T , Vacinação , Vacinas Combinadas , Vacinas contra COVID-19/imunologia , Vacinas SintéticasRESUMO
Overexpression of TNF contributes to pathogenesis of multiple autoimmune diseases, accounting for a remarkable success of anti-TNF therapy. TNF is produced by a variety of cell types, and it can play either a beneficial or a deleterious role. In particular, in autoimmunity pathogenic TNF may be derived from restricted cellular sources. In this study we evaluated the feasibility of cell-type-restricted TNF inhibition in vivo. To this end, we engineered MYSTI (Myeloid-Specific TNF Inhibitor)--a recombinant bispecific antibody that binds to the F4/80 surface molecule on myeloid cells and to human TNF (hTNF). In macrophage cultures derived from TNF humanized mice MYSTI could capture the secreted hTNF, limiting its bioavailability. Additionally, as evaluated in TNF humanized mice, MYSTI was superior to an otherwise analogous systemic TNF inhibitor in protecting mice from lethal LPS/D-Galactosamine-induced hepatotoxicity. Our results suggest a novel and more specific approach to inhibiting TNF in pathologies primarily driven by macrophage-derived TNF.
Assuntos
Anticorpos Biespecíficos/imunologia , Antígenos de Diferenciação/imunologia , Doença Hepática Induzida por Substâncias e Drogas/terapia , Macrófagos Peritoneais/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Substituição de Aminoácidos , Animais , Anticorpos Biespecíficos/genética , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos , Reações Antígeno-Anticorpo , Antígenos de Diferenciação/genética , Antígenos de Superfície/imunologia , Camelus/imunologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Galactosamina/toxicidade , Genes Sintéticos , Humanos , Células L , Macrófagos Peritoneais/imunologia , Camundongos , Mutação , Distribuição Aleatória , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Cytokines are involved in a wide range of functions shaping the normal immune response, yet inflammatory changes in the immune system due to dysregulated cytokine signaling may lead to the induction of autoimmunity. Cytokine inhibitors have revolutionized the treatment of many autoimmune diseases in recent years. Systemic cytokine ablation, however, is often associated with the development of adverse side effects and some patients simply do not respond to therapy. TNF, IL-1 and IL-6 are the best characterized proinflammatory cytokines considered as the main therapeutic targets for the treatment of several autoimmune and inflammatory diseases. But can anti-cytokine therapy become more selective and thus more efficient? This mini-review discusses several recently emerging paradigms and summarizes current experimental attempts to validate them in mouse studies.
Assuntos
Autoimunidade/imunologia , Citocinas/antagonistas & inibidores , Modelos Animais de Doenças , Imunoterapia , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Citocinas/imunologia , Inflamação/terapia , Interleucina-1/antagonistas & inibidores , Interleucina-6/antagonistas & inibidores , Camundongos , Fator de Necrose Tumoral alfa/antagonistas & inibidoresRESUMO
Adenovirus vaccines, particularly the COVID-19 Ad5-nCoV adenovirus vaccine, have emerged as promising tools in the fight against infectious diseases. In this study, we investigated the structure of the T cell response to the Spike protein of the SARS-CoV-2 virus used in the COVID-19 Ad5-nCoV adenoviral vaccine in a phase 3 clinical trial (NCT04540419). In 69 participants, we collected peripheral blood samples at four time points after vaccination or placebo injection. Sequencing of T cell receptor repertoires from Spike-stimulated T cell cultures at day 14 from 17 vaccinated revealed a more diverse CD4+ T cell repertoire compared to CD8+. Nevertheless, CD8+ clonotypes accounted for more than half of the Spike-specific repertoire. Our longitudinal analysis showed a peak T cell response at day 14, followed by a decline until month 6. Remarkably, multiple T cell clonotypes persisted for at least 6 months after vaccination, as demonstrated by ex vivo stimulation. Examination of CDR3 regions revealed homologous sequences in both CD4+ and CD8+ clonotypes, with major CD8+ clonotypes sharing high similarity with annotated sequences specific for the NYNYLYRLF peptide, suggesting potential immunodominance. In conclusion, our study demonstrates the immunogenicity of the Ad5-nCoV adenoviral vaccine and highlights its ability to induce robust and durable T cell responses. These findings provide valuable insight into the efficacy of the vaccine against COVID-19 and provide critical information for ongoing efforts to control infectious diseases.
Assuntos
COVID-19 , Doenças Transmissíveis , Vacinas , Humanos , Vacinas contra COVID-19 , Glicoproteína da Espícula de Coronavírus , COVID-19/prevenção & controle , SARS-CoV-2 , Linfócitos T , Adenoviridae/genéticaRESUMO
A significant share of allogeneic hematopoietic stem cell transplantations (allo-HSCT) results in the relapse of malignant disease. The T cell immune response to minor histocompatibility antigens (MiHAs) promotes a favorable graft-versus-leukemia response. The immunogenic MiHA HA-1 is a promising target for leukemia immunotherapy, as it is predominantly expressed in hematopoietic tissues and presented by the common HLA A*02:01 allele. Adoptive transfer of HA-1-specific modified CD8+ T cells could complement allo-HSCT from HA-1- donors to HA-1+ recipients. Using bioinformatic analysis and a reporter T cell line, we discovered 13 T cell receptors (TCRs) specific for HA-1. Their affinities were measured by the response of the TCR-transduced reporter cell lines to HA-1+ cells. The studied TCRs showed no cross-reactivity to the panel of donor peripheral mononuclear blood cells with 28 common HLA alleles. CD8+ T cells after endogenous TCR knock out and introduction of transgenic HA-1-specific TCR were able to lyse hematopoietic cells from HA-1+ patients with acute myeloid, T-, and B-cell lymphocytic leukemia (n = 15). No cytotoxic effect was observed on cells from HA-1- or HLA-A*02-negative donors (n = 10). The results support the use of HA-1 as a target for post-transplant T cell therapy.
RESUMO
BACKGROUND: To determine the immunogenicity, efficacy, reactogenicity, and safety of a single dose of recombinant adenovirus type-5 vectored COVID-19 vaccine (Ad5-nCoV, 5 × 1010 viral particles per 0.5 mL dose), we conducted a single-dose, randomised, double-blind, placebo-controlled, parallel group (3:1 Ad5-nCoV:placebo), phase 3 trial (Prometheus). METHODS: From 11-September-2020 to 05-May-2021, across six sites in the Russian Federation, 496 participants were injected with either placebo or Ad5-nCoV expressing the full-length spike (S) protein from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RESULTS: Seroconversion (the primary endpoint) rates of 78.5% (95% CI: 73.9; 82.6) against receptor binding domain (RBD), 90.6% (95% CI: 87.2; 93.4) against S protein and 59.0% (95% CI: 53.3; 64.6) seroconversion of neutralising antibodies against SARS-CoV-2 at 28 days post-vaccination were observed. Geometric mean titres (GMTs) were also elevated for antibodies against the RBD (405 [95% CI: 366; 449]) and S protein (677 [95% CI: 608; 753]) compared to the GMT of neutralising antibodies against SARS-CoV-2 (16.7 [95% CI: 15.3; 18.3]). Using an IFN-γ ELISpot assay after stimulating the cells with recombinant S protein ectodomain we showed that the Ad5-nCoV vaccine induced the most robust cellular immune response on Days 14 and 28. Up to Day 28, the primary and all secondary endpoints of the Ad5-nCoV vaccine were statistically significant compared with the placebo (Ñ<0.001). Systemic reactions were reported in 113 of 496 (22.8%) participants (Ad5-nCoV, 26.9%; Placebo, 10.5%), and local reactions were reported in 108 (21.8%) participants (Ad5-nCoV, 28.5%; Placebo, 1.6%). These were generally mild and resolved within 7 days after vaccination. Of the six serious adverse events reported, none of the events were vaccine related. There were no deaths or premature withdrawals. CONCLUSION: A single-dose of Ad5-nCoV vaccine induced a marked specific humoral and cellular immune response with a favourable safety profile. TRIAL REGISTRATION: Trial registration: ClinicalTrials.gov: NCT04540419.
Assuntos
Infecções por Adenoviridae , COVID-19 , Adulto , Humanos , Vacinas contra COVID-19/efeitos adversos , Adenoviridae/genética , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Método Duplo-Cego , Imunogenicidade da VacinaRESUMO
T cells play a pivotal role in reducing disease severity during SARS-CoV-2 infection and formation of long-term immune memory. We studied 50 COVID-19 convalescent patients and found that T cell response was induced more frequently and persisted longer than circulating antibodies. We identified 756 clonotypes specific to nine CD8+ T cell epitopes. Some epitopes were recognized by highly similar public clonotypes. Receptors for other epitopes were extremely diverse, suggesting alternative modes of recognition. We tracked persistence of epitope-specific response and individual clonotypes for a median of eight months after infection. The number of recognized epitopes per patient and quantity of epitope-specific clonotypes decreased over time, but the studied epitopes were characterized by uneven decline in the number of specific T cells. Epitopes with more clonally diverse TCR repertoires induced more pronounced and durable responses. In contrast, the abundance of specific clonotypes in peripheral circulation had no influence on their persistence.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Epitopos de Linfócito T , Linfócitos T CD8-Positivos , Células ClonaisRESUMO
Since multiple different T-cell receptor (TCR) sequences can bind to the same peptide-MHC combination and the number of TCR-sequences that can theoretically be generated even exceeds the number of T cells in a human body, the likelihood that many public identical (PUB-I) TCR-sequences frequently contribute to immune responses has been estimated to be low. Here, we quantitatively analyzed the TCR-repertoires of 190 purified virus-specific memory T-cell populations, directed against 21 epitopes of Cytomegalovirus, Epstein-Barr virus and Adenovirus isolated from 29 healthy individuals, and determined the magnitude, defined as prevalence within the population and frequencies within individuals, of PUB-I TCR and of TCR-sequences that are highly-similar (PUB-HS) to these PUB-I TCR-sequences. We found that almost one third of all TCR nucleotide-sequences represented PUB-I TCR amino-acid (AA) sequences and found an additional 12% of PUB-HS TCRs differing by maximally 3 AAs. We illustrate that these PUB-I and PUB-HS TCRs were structurally related and contained shared core-sequences in their TCR-sequences. We found a prevalence of PUB-I and PUB-HS TCRs of up to 50% among individuals and showed frequencies of virus-specific PUB-I and PUB-HS TCRs making up more than 10% of each virus-specific T-cell population. These findings were confirmed by using an independent TCR-database of virus-specific TCRs. We therefore conclude that the magnitude of the contribution of PUB-I and PUB-HS TCRs to these virus-specific T-cell responses is high. Because the T cells from these virus-specific memory TCR-repertoires were the result of successful control of the virus in these healthy individuals, these PUB-HS TCRs and PUB-I TCRs may be attractive candidates for immunotherapy in immunocompromised patients that lack virus-specific T cells to control viral reactivation.
Assuntos
Infecções por Vírus Epstein-Barr , Citomegalovirus , Herpesvirus Humano 4 , Humanos , Receptores de Antígenos de Linfócitos T , Linfócitos TRESUMO
The development of effective vaccines against SARS-CoV-2 remains a global health priority. Despite extensive use, the effects of Sputnik V on B cell immunity need to be explored in detail. We performed comprehensive profiling of humoral and B cell responses in a cohort of vaccinated subjects (n = 22), and demonstrate that Sputnik vaccination results in robust B cell immunity. We show that B memory cell (MBC) and antibody responses to Sputnik V were heavily dependent on whether the vaccinee had a history of SARS-CoV-2 infection or not. 85 days after the first dose of the vaccine, ex vivo stimulated MBCs from the vast majority of Sputnik V vaccinees produced antibodies that robustly neutralized the Wuhan Spike-pseudotyped lentivirus. MBC-derived antibodies from all previously infected and some of the naïve vaccine recipients could also cross-neutralize Beta (B.1.351) variant of SARS-CoV-2. Virus-neutralizing activity of MBC-derived antibodies correlated well with that of the serum antibodies, suggesting the interplay between the MBC and long-lived plasma cell responses. Thus, our in-depth analysis of MBC responses in Sputnik V vaccinees complements traditional serological approaches and may provide important outlook into future B cell responses upon re-encounter with the emerging variants of SARS-CoV-2.
Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Células B de Memória/imunologia , SARS-CoV-2/fisiologia , Vacinas Sintéticas/imunologia , Idoso , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Células Cultivadas , Estudos de Coortes , Feminino , Humanos , Imunização , Masculino , Pessoa de Meia-Idade , VacinaçãoRESUMO
T cells play a vital role in combatting SARS-CoV-2 and forming long-term memory responses. Whereas extensive structural information is available on neutralizing antibodies against SARS-CoV-2, such information on SARS-CoV-2-specific T-cell receptors (TCRs) bound to their peptide-MHC targets is lacking. Here we determine the structures of a public and a private TCR from COVID-19 convalescent patients in complex with HLA-A2 and two SARS-CoV-2 spike protein epitopes (YLQ and RLQ). The structures reveal the basis for selection of particular TRAV and TRBV germline genes by the public but not the private TCR, and for the ability of the TCRs to recognize natural variants of RLQ but not YLQ. Neither TCR recognizes homologous epitopes from human seasonal coronaviruses. By elucidating the mechanism for TCR recognition of an immunodominant yet variable epitope (YLQ) and a conserved but less commonly targeted epitope (RLQ), this study can inform prospective efforts to design vaccines to elicit pan-coronavirus immunity.
Assuntos
COVID-19/imunologia , Epitopos de Linfócito T/imunologia , Antígeno HLA-A2/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , COVID-19/virologia , Epitopos de Linfócito T/metabolismo , Antígeno HLA-A2/química , Antígeno HLA-A2/metabolismo , Humanos , Epitopos Imunodominantes/imunologia , Epitopos Imunodominantes/metabolismo , Células Jurkat , Células K562 , Peptídeos/química , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Ressonância de Plasmônio de Superfície/métodosRESUMO
The ongoing COVID-19 pandemic calls for more effective diagnostic tools. T cell response assessment serves as an independent indicator of prior COVID-19 exposure while also contributing to a more comprehensive characterization of SARS-CoV-2 immunity. In this study, we systematically assessed the immunogenicity of 118 epitopes with immune cells collected from multiple cohorts of vaccinated, convalescent, healthy unexposed, and SARS-CoV-2-exposed donors. We identified 75 immunogenic epitopes, 24 of which were immunodominant. We further confirmed HLA restriction for 49 epitopes and described association with more than 1 HLA allele for 14 of these. Exclusion of 2 cross-reactive epitopes that generated a response in prepandemic samples left us with a 73-epitope set that offered excellent diagnostic specificity without losing sensitivity compared with full-length antigens, and this evoked a robust cross-reactive response. We subsequently incorporated this set of epitopes into an in vitro diagnostic Corona-T-test, which achieved a diagnostic accuracy of 95% in a clinical trial. In a cohort of asymptomatic seronegative individuals with a history of prolonged SARS-CoV-2 exposure, we observed a complete absence of T cell response to our epitope panel. In combination with strong reactivity to full-length antigens, this suggests that a cross-reactive response might protect these individuals.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Epitopos de Linfócito T , Humanos , Pandemias , Linfócitos TRESUMO
COVID-19 is a global pandemic caused by the SARS-CoV-2 coronavirus. T cells play a key role in the adaptive antiviral immune response by killing infected cells and facilitating the selection of virus-specific antibodies. However, neither the dynamics and cross-reactivity of the SARS-CoV-2-specific T-cell response nor the diversity of resulting immune memory is well understood. In this study, we use longitudinal high-throughput T-cell receptor (TCR) sequencing to track changes in the T-cell repertoire following two mild cases of COVID-19. In both donors, we identified CD4+ and CD8+ T-cell clones with transient clonal expansion after infection. We describe characteristic motifs in TCR sequences of COVID-19-reactive clones and show preferential occurrence of these motifs in publicly available large dataset of repertoires from COVID-19 patients. We show that in both donors, the majority of infection-reactive clonotypes acquire memory phenotypes. Certain T-cell clones were detected in the memory fraction at the pre-infection time point, suggesting participation of pre-existing cross-reactive memory T cells in the immune response to SARS-CoV-2.
Assuntos
COVID-19/imunologia , Memória Imunológica , Receptores de Antígenos de Linfócitos T/genética , Sequência de Aminoácidos , COVID-19/fisiopatologia , Reações Cruzadas , Mapeamento de Epitopos , Feminino , Biblioteca Gênica , Teste de Histocompatibilidade , Humanos , Estudos Longitudinais , Masculino , Receptores de Antígenos de Linfócitos T/química , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Linfócitos T/imunologiaRESUMO
Initially TNF has been discovered as an anti-tumor factor, but it is now considered as one of the universal effectors of innate signaling implicating its key role in host defense and inflammation. Other physiological functions of TNF are primarily linked to organization of lymphoid tissues. TNF can exert deleterious effects on the organism when its local or systemic concentrations exceed certain levels. This is the main reason for the failure of TNF therapy in oncology. Moreover, in certain experimental models TNF to TNFRp55 signaling axis was found to play a pro-tumorigenic role. On the other hand, anti-TNF therapy proved to be beneficial in rheumatic and other autoimmune diseases. Taking into consideration the pivotal function of TNF in the immune system, it is obvious that such therapy cannot be entirely free of adverse effects including suppression of host defense and, possibly, predisposition to lymphomas. Lymphotoxins alpha and beta are the two related cytokines that exist in distinct trimeric forms which can signal through TNFR I and TNFR II, as well LTbetaR receptors, depending on the composition of the trimer. These signals have important functions in the development and homeostasis of the immune system. Importantly, there is a recently uncovered link between the LTalpha/LTbeta to LTbetaR signaling axis and cancer. Here we review the current status of the field with the focus on one particular issue: are TNF and lymphotoxins intrinsically anti-cancer or pro-tumorigenic.
Assuntos
Linfotoxina-alfa/imunologia , Neoplasias/imunologia , Fatores de Necrose Tumoral/imunologia , Animais , Citocinas/imunologia , Inflamação/imunologia , Camundongos , Receptores do Fator de Necrose Tumoral/imunologia , Transdução de Sinais/imunologiaRESUMO
A subset of MHC-associated self-peptides presented by the recipient's cells and immunologically foreign to the donor can induce an allogeneic immune response after hematopoietic stem cell transplantation (HSCT). These immunogenic peptides originate from the genomic polymorphisms and are known as minor histocompatibility antigens (MiHA). MiHA mismatches trigger the post-transplant immune response, which could manifest in both the deleterious "graft-vs.-host" disease and the beneficial "graft-vs.-leukemia" effect. Importantly, some MiHAs are considered to be promising targets for posttransplant T-cell immunotherapy of hematopoietic malignancies. This creates a demand for a robust and fast approach to genotyping MiHA-encoding polymorphisms. We report a multiplex real-time PCR method for the genotyping of 20 polymorphisms that are encoding HLA-A*02:01-restricted MiHAs. This method uses allele-specific primers and gene-specific hydrolysis probes. In 1 h it allows for the detection of MiHA mismatches in a donor-recipient pair without the need for electrophoresis, sequencing, or other time-consuming techniques. We validated the method with Sanger and NGS sequencing and demonstrated good performance over a wide range of DNA concentrations. We propose our protocol as a fast and accurate method of identifying mismatched MiHAs. The information on the MiHA mismatches is useful for studying the allogeneic immune response following HSCT and for selecting the targets for post-transplant T-cell therapy.
Assuntos
Antígenos HLA-A/genética , Antígenos de Histocompatibilidade Menor/genética , Alelos , Genômica/métodos , Genótipo , Doença Enxerto-Hospedeiro/genética , Efeito Enxerto vs Leucemia/genética , Neoplasias Hematológicas/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Linfócitos T/fisiologia , Transplante Homólogo/métodosRESUMO
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is routinely used to treat hematopoietic malignancies. The eradication of residual tumor cells during engraftment is mediated by donor cytotoxic T lymphocytes reactive to alloantigens. In a HLA-matched transplantation context, alloantigens are encoded by various polymorphic genes situated outside the HLA locus, also called minor histocompatibility antigens (MiHAs). Recently, MiHAs have been recognized as promising targets for post-transplantation T-cell immunotherapy as they have several appealing advantages over tumor-associated antigens (TAAs) and neoantigens, i.e., they are more abundant than TAAs, which potentially facilitates multiple targeting; and unlike neoantigens, they are encoded by germline polymorphisms, some of which are common and thus, suitable for off-the-shelf therapy. The genetic sources of MiHAs are nonsynonymous polymorphisms that cause differences between the recipient and donor proteomes and subsequently, the immunopeptidomes. Systematic description of the alloantigen landscape in HLA-matched transplantation is still lacking as previous studies focused only on a few immunogenic and common MiHAs. Here, we perform a thorough in silico analysis of the public genomic data to classify genetic polymorphisms that lead to MiHA formation and estimate the number of potentially available MiHA mismatches. Our findings suggest that a donor/recipient pair is expected to have at least several dozen mismatched strong MHC-binding SNP-associated peptides per HLA allele (116 ± 26 and 65 ± 15 for non-related pairs and siblings respectively in European populations as predicted by two independent algorithms). Over 70% of them are encoded by relatively frequent polymorphisms (minor allele frequency > 0.1) and thus, may be targetable by off-the-shelf therapeutics. We showed that the most appealing targets (probability of mismatch over 20%) reside in the asymmetric allele frequency region, which spans from 0.15 to 0.47 and corresponds to an order of several hundred (213 ± 47) possible targets per HLA allele that can be considered for immunogenicity validation. Overall, these findings demonstrate the significant potential of MiHAs as targets for T-cell immunotherapy and emphasize the need for the systematic discovery of novel MiHAs.