RESUMO
In this study, we compared the conversion of polyethylene terephthalate (PET) into porous carbons for water purification using pyrolysis and post-activation with KOH. Pyrolysis was conducted at 400-850 °C, followed by KOH activation at 850 °C for samples pyrolyzed at 400, 650, and 850 °C. Both pyrolyzed and post-activated carbons showed high specific surface areas, up to 504.2 and 617.7 m2 g-1, respectively. As the pyrolysis temperature increases, the crystallite size of the graphite phase rises simultaneously with a decrease in specific surface area. This phenomenon significantly influences the final specific surface area values of the activated samples. Despite their relatively high specific surface areas, pyrolyzed PET-derived carbons prove unsuitable as adsorbents for purifying aqueous media from methylene blue dye. A sample pyrolyzed at 650 °C, with a surface area of 504.2 m2 g-1, exhibited a maximum adsorption value of only 20.4 mg g-1. We propose that the pyrolyzed samples have a surface coating of amorphous carbon poor in oxygen groups, impeding the diffusion of dye molecules. Conversely, post-activated samples emerge as promising adsorbents, exhibiting a maximum adsorption capacity of up to 127.7 mg g-1. This suggests their potential for efficient dye removal in water purification applications.
RESUMO
Novel ternary hybrid polyphenoxazine (PPOA)-derived nanocomposites involving Co-Fe particles and single-walled (SWCNTs) or multi-walled (MWCNTs) carbon nanotubes were prepared and investigated. An efficient one-pot method employing infrared (IR) heating enabled the formation of Co-Fe/CNT/PPOA nanocomposites. During this, the dehydrogenation of phenoxazine (POA) units led to the simultaneous reduction of metals by released hydrogen, yielding bimetallic Co-Fe particles with a size range from the nanoscale (5-30 nm) to the microscale (400-1400 nm). The synthesized Co-Fe/CNT/PPOA nanomaterials exhibited impressive thermal stability, demonstrating a half-weight loss at 640 °C and 563 °C in air for Co-Fe/SWCNT/PPOA and Co-Fe/MWCNT/PPOA, respectively. Although a slightly broader range of saturation magnetization values was obtained using MWCNTs, it was found that the type of carbon nanotube, whether an SWCNT (22.14-41.82 emu/g) or an MWCNT (20.93-44.33 emu/g), did not considerably affect the magnetic characteristics of the resulting nanomaterial. By contrast, saturation magnetization escalated with an increasing concentration of both cobalt and iron. These nanocomposites demonstrated a weak dependence of electrical conductivity on frequency. It is shown that the conductivity value for hybrid nanocomposites is higher compared to single-polymer materials and becomes higher with increasing CNT content.
RESUMO
Fe-Co alloy nanoparticles with different sizes, supported by carbon derived from several polymers, namely polyacrylonitrile, polyvinyl alcohol and chitosan, have been synthesized by a one-pot method involving simultaneous metal nanoparticle formation and polymer carbonization. The method involves the joint dissolution of metal salts and a polymer, followed by annealing of the resulting dried film. Detailed XRD analysis confirmed the formation of Fe-Co alloy nanoparticles in each sample, regardless of the initial polymer used. Transmission electron microscopy images showed that the Fe-Co nanoparticles were all spherical, were homogeneously distributed within the carbon support and varied by size depending on the initial polymer nature and synthesis temperature. Fe-Co nanoparticles supported by polyacrylonitrile-derived carbon exhibited the smallest size (6-12 nm), whereas nanoparticles on chitosan-derived carbon support were characterized by the largest particle size (13-38 nm). The size dependence of magnetic properties were studied by a vibrating sample magnetometer at room temperature. For the first time, the critical particle size of Fe-Co alloy nanoparticles with equiatomic composition has been experimentally determined as 13 nm, indicating the transition of magnetic properties from ferromagnetic to superparamagnetic.
RESUMO
In this study, ultrafiltration membranes were developed via a nonsolvent-induced phase separation method for the removal of asphaltenes from crude oil. Polyacrylonitrile (PAN) and acrylonitrile copolymers with acrylic acid were used as membrane materials. Copolymerizing acrylonitrile with acrylic acid resulted in an improvement in the fouling resistance of the membranes. The addition of 10% of acrylic acid to the polymer chain decreases the water contact angle from 71° to 43°, reducing both the total fouling and irreversible fouling compared to membranes made from a PAN homopolymer. The obtained membranes with a pore size of 32-55 nm demonstrated a pure toluene permeance of 84.8-130.4 L/(m2·h·bar) and asphaltene rejection from oil/toluene solutions (100 g/L) of 33-95%. An analysis of the asphaltene rejection values revealed that the addition of acrylic acid increases the rejection values in comparison to PAN membranes with the same pore size. Our results suggest that the acrylonitrile-acrylic acid copolymer ultrafiltration membranes have promising potential for the efficient removal of asphaltenes from crude oil.
RESUMO
Hybrid composites based on electroactive polymers of diphenylamine-2-carboxylic acid (PDPAC) and highly porous carbon with a hierarchical pore structure were prepared for the first time. Activated IR-pyrolyzed polyacrylonitrile (IR-PAN-a), characterized by a highly developed surface, was chosen as a highly porous N-doped carbon component of the hybrid materials. IR-PAN-a was prepared using pyrolysis of polyacrylonitrile (PAN) in the presence of potassium hydroxide under IR radiation. Composite materials were obtained using oxidative polymerization of diphenylamine-2-carboxylic acid (DPAC) in the presence of IR-PAN-a both in an acidic and an alkaline medium. The composite materials were IR-heated to reduce the oxygen content and enhance their physical and chemical properties. The chemical structure, morphology, and electrical and thermal properties of the developed IR-PAN-a/PDPAC composites were investigated. The IR-PAN-a/PDPAC composites are thermally stable and electrically conductive. During the synthesis of the composites in an acidic medium, doping of the polymer component occurs, which makes the main contribution to the composite conductivity (1.3 × 10-5 S/cm). A sharp drop in the electrical conductivity of the IR-PAN-a/PDPACac-IR composites to 3.4 × 10-10 S/cm is associated with the removal of the dopant during IR heating. The IR-PAN-a/PDPACalk composites prepared before and after IR heating show a gradual increase in electrical conductivity by five orders of magnitude to 1.6 × 10-5 S/cm at 25-106 Hz. IR heating of the obtained materials leads to a significant increase in their thermal properties. The IR-heated composites lose half of their initial weight in an inert atmosphere at temperatures above 1000 °C, whereas for IR-PAN-a/PDPAC, the temperature range is 840-849 °C.
RESUMO
For the first time, a systematic study was carried out of the replacement of the low-volatility solvents N-methyl-2-pyrrolidone (NMP) or dimethylsulfoxide (DMSO) with the high-volatility solvent acetone in the casting solution of polyacrylonitrile (PAN). The effect of acetone's presence in the casting solution on the performance of ultrafiltration membranes fabricated via vapor-induced phase separation (VIPS) was investigated. It was possible to replace 40% of NMP and 50% of DMSO with acetone, which resulted in the reduction of the casting solution viscosity from 70.6 down to 41.3 Paâs (20% PAN, NMP), and from 68.3 down to 20.6 Paâs (20% PAN, DMSO). It was found that 20 min of exposure to water vapor (relative humidity-85%) was sufficient to govern the phase separation, which was mainly induced by the water vapor. Regardless of the casting solution composition (15 or 20% PAN; DMSO or NMP), all membranes formed via VIPS possessed a sponge-like porous structure. The addition of acetone to the casting solution allowed the reduction of the transport pore size from 35-48 down to 8.5-25.6, depending on the casting solution composition. By varying the acetone content at constant polymer concentration, it was possible to decrease the molecular weight cut-off (MWCO) from 69 to 10 kg/mol. Membranes prepared from 20% PAN solution in an acetone/DMSO mixture had the lowest MWCO of 10 kg/mol with a water permeance of 5.1 L/(m2·h·bar).
RESUMO
For the first time, the presence of acetone in the casting solutions of polyacrylonitrile (PAN) in dimethylsulfoxide or N-methyl-2-pyrrolidone was studied with regards to thermodynamical aspects of phase separation of polymeric solutions induced by contact with non-solvent (water), formation and performance of porous membranes of ultrafiltration range. The positions of the liquid equilibrium binodals on the phase diagrams of these three-component and pseudo-three-component mixtures were determined. For PAN-N-methyl-2-pyrrolidone-water glass transition curve on a ternary phase diagram was plotted experimentally for the first time. The real-time evolution of the structure of mixtures of PAN with solvents (co-solvents) upon contact with a non-solvent (water) has been studied. The thermodynamic analysis of the phase diagrams of these mixtures, together with optical data, made it possible to propose a mechanism of structure formation during non-solvent induced phase separation of different mixtures. The addition of acetone promotes the formation of a spongy layer on the membrane surface, which decreases the probability of defect formation on the membrane surface and keeps finger-like macrovoids from the underlying layers of the membrane. It was shown that the molecular weight cut-off (MWCO) of the membranes can be improved from 58 down to 1.8 kg/mol by changing the acetone content, while polymer concentration remained the same.
RESUMO
A one-step preparation method for hybrid electromagnetic nanomaterials based on polydiphenylamine (PDPA) and bimetallic Co-Fe particles in the absence and presence of single-walled carbon nanotubes (SWCNT) was proposed. During IR heating of PDPA in the presence of Co(ii) and Fe(iii) salts in an inert atmosphere at T = 450-600 °C, the polycondensation of diphenylamine (DPA) oligomers and dehydrogenation of phenyleneamine units of the polymer with the formation of C[double bond, length as m-dash]N bonds and reduction of metals by evolved hydrogen with the formation of bimetallic Co-Fe particles dispersed in a polymer matrix occur simultaneously. When carbon nanotubes are introduced into the reaction system, a nanocomposite material is formed, in which bimetallic Co-Fe particles immobilized on SWCNT are distributed in the matrix of the polymer. According to XRD data, reflection peaks of bimetallic Co-Fe particles at diffraction scattering angles 2θ = 69.04° and 106.5° correspond to a solid solution based on the fcc-Co crystal lattice. According to SEM and TEM data, a mixture of particles with sizes of 8-30 nm and 400-800 nm (Co-Fe/PDPA) and 23-50 nm and 400-1100 nm (Co-Fe/SWCNT/PDPA) is formed in the nanocomposites. The obtained multifunctional Co-Fe/PDPA and Co-Fe/SWCNT/PDPA nanomaterials demonstrate good thermal, electrical and magnetic properties. The saturation magnetization of the nanomaterials is M S = 14.99-31.32 emu g-1 (Co-Fe/PDPA) and M S = 29.48-48.84 emu g-1 (Co-Fe/SWCNT/PDPA). The electrical conductivity of the nanomaterials reaches 3.5 × 10-3 S cm-1 (Co-Fe/PDPA) and 1.3 S cm-1 (Co-Fe/SWCNT/PDPA). In an inert medium, at 1000 °C the residue is 71-77%.