Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 96: 44-52, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30986568

RESUMO

The latest breakthrough towards the adequate and decisive methods of gene editing tools provided by CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR Associated System), has been repurposed into a tool for genetically engineering eukaryotic cells and now considered as the major innovation in gene-related disorders. Nanotechnology has provided an alternate way to overcome the conventional problems where methods to deliver therapeutic agents have failed. The use of nanotechnology has the potential to safe-side the CRISPR/Cas9 components delivery by using customized polymeric nanoparticles for safety and efficacy. The pairing of two (CRISPR/Cas9 and nanotechnology) has the potential for opening new avenues in therapeutic use. In this review, we will discuss the most recent advances in developing nanoparticle-based CRISPR/Cas9 gene editing cargo delivery with a focus on several polymeric nanoparticles including fabrication proposals to combat microbial infections.


Assuntos
Infecções Bacterianas/genética , Infecções Bacterianas/terapia , Sistemas CRISPR-Cas/genética , Sistemas de Liberação de Medicamentos , Edição de Genes/métodos , Nanopartículas/administração & dosagem , Polímeros/administração & dosagem , Humanos , Nanomedicina
2.
Pathog Dis ; 822024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38862192

RESUMO

To begin to optimize the immunization routes for our reported PLGA-rMOMP nanovaccine [PLGA-encapsulated Chlamydia muridarum (Cm) recombinant major outer membrane protein (rMOMP)], we compared two prime-boost immunization strategies [subcutaneous (SC) and intramuscular (IM-p) prime routes followed by two SC-boosts)] to evaluate the nanovaccine-induced protective efficacy and immunogenicity in female BALB/c mice. Our results showed that mice immunized via the SC and IM-p routes were protected against a Cm genital challenge by a reduction in bacterial burden and with fewer bacteria in the SC mice. Protection of mice correlated with rMOMP-specific Th1 (IL-2 and IFN-γ) and not Th2 (IL-4, IL-9, and IL-13) cytokines, and CD4+ memory (CD44highCD62Lhigh) T-cells, especially in the SC mice. We also observed higher levels of IL-1α, IL-6, IL-17, CCL-2, and G-CSF in SC-immunized mice. Notably, an increase of cytokines/chemokines was seen after the challenge in the SC, IM-p, and control mice (rMOMP and PBS), suggesting a Cm stimulation. In parallel, rMOMP-specific Th1 (IgG2a and IgG2b) and Th2 (IgG1) serum, mucosal, serum avidity, and neutralizing antibodies were more elevated in SC than in IM-p mice. Overall, the homologous SC prime-boost immunization of mice induced enhanced cellular and antibody responses with better protection against a genital challenge compared to the heterologous IM-p.


Assuntos
Anticorpos Antibacterianos , Vacinas Bacterianas , Infecções por Chlamydia , Chlamydia muridarum , Citocinas , Camundongos Endogâmicos BALB C , Animais , Feminino , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Chlamydia muridarum/imunologia , Citocinas/metabolismo , Infecções por Chlamydia/prevenção & controle , Infecções por Chlamydia/imunologia , Camundongos , Anticorpos Antibacterianos/sangue , Injeções Intramusculares , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Imunização Secundária , Modelos Animais de Doenças , Imunogenicidade da Vacina , Injeções Subcutâneas , Nanopartículas/administração & dosagem , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/administração & dosagem , Eficácia de Vacinas , Células Th1/imunologia , Nanovacinas
3.
Biochem Biophys Rep ; 37: 101596, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38146350

RESUMO

The molecular mechanism underlying Plasmodium falciparum's persistence in the asymptomatic phase of infection remains largely unknown. However, large-scale shifts in the parasites' gene expression during asymptomatic infections may enhance phenotypic plasticity, maximizing their fitness and leading to the persistence of the asymptomatic infections. To uncover these mechanisms, we aimed to identify parasite genetic factors implicated in asymptomatic infections through whole transcriptome analysis. We analyzed publicly available transcriptome datasets containing asymptomatic malaria (ASM), uncomplicated malaria (SM), and malaria-naïve (NSM) samples from 35 subjects for differentially expressed genes (DEGs) and long noncoding RNAs. Our analysis identified 755 and 1773 DEGs in ASM vs SM and NSM, respectively. These DEGs revealed sets of genes coding for proteins of unknown functions (PUFs) upregulated in ASM vs SM and ASM, suggesting their role in underlying fundamental molecular mechanisms during asymptomatic infections. Upregulated genes in ASM vs SM revealed a subset of 24 clonal variant genes (CVGs) involved in host-parasite and symbiotic interactions and modulation of the symbiont of host erythrocyte aggregation pathways. Moreover, we identified 237 differentially expressed noncoding RNAs in ASM vs SM, of which 11 were found to interact with CVGs, suggesting their possible role in regulating the expression of CVGs. Our results suggest that P. falciparum utilizes phenotypic plasticity as an adaptive mechanism during asymptomatic infections by upregulating clonal variant genes, with long noncoding RNAs possibly playing a crucial role in their regulation. Thus, our study provides insights into the parasites' genetic factors that confer a fitness advantage during asymptomatic infections.

4.
Am J Trop Med Hyg ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917821

RESUMO

Phleboviruses are an emerging threat to public health. Recent surveillance efforts in Kenya have unveiled novel phleboviruses. Despite these efforts, there remain knowledge gaps. This study tested female sandflies from diverse ecological settings in Kenya for arboviruses. Sandfly pools were cultured in Vero-CCL cells. Pools showing reproducible cytopathic effects were subjected to next-generation sequencing, followed by phylogenetic analysis. In vitro, cell kinetics analysis was performed using both Vero-E6 cells and C6/36 mosquito cells. One pool from Baringo, Kenya, tested positive for Bogoria virus (BOGV). The BOGV genome clustered in a single clade with previously obtained BOGV genomes. No significant differences were observed between Vero and C6/36 cell growth kinetics. This study has confirmed the presence of BOGV among sandflies in Baringo Kenya and demonstrated growth in mosquito cells.

5.
Lancet Microbe ; 5(7): 669-678, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761813

RESUMO

BACKGROUND: Mutations in the Plasmodium falciparum dhfr gene confer resistance to pyrimethamine, which is widely used for malaria chemoprevention in Africa. We aimed to evaluate the frequency and evolution of dhfr mutations in Plasmodium ovale spp in Africa and their functional consequences, which are incompletely characterised. METHODS: We analysed dhfr mutations and their frequencies in P ovale spp isolates collected between Feb 1, 2004, and Aug 31, 2023, from the French National Malaria Reference Centre collection and from field studies in Benin, Gabon, and Kenya. Genetic patterns of positive selection were investigated. Full-length recombinant wild-type and mutant DHFR enzymes from both P ovale curtisi and P ovale wallikeri were expressed in bacteria to test whether the most common mutations reduced pyrimethamine susceptibility. FINDINGS: We included 518 P ovale spp samples (314 P ovale curtisi and 204 P ovale wallikeri). In P ovale curtisi, Ala15Ser-Ser58Arg was the most common dhfr mutation (39%; 124 of 314 samples). In P ovale wallikeri, dhfr mutations were less frequent, with Phe57Leu-Ser58Arg reaching 17% (34 of 204 samples). These two mutants were the most prevalent in central and east Africa and were fixed in Kenyan isolates. We detected six and four other non-synonymous mutations, representing 8% (24 isolates) and 2% (five isolates) of the P ovale curtisi and P ovale wallikeri isolates, respectively. Whole-genome sequencing and microsatellite analyses revealed reduced genetic diversity around the mutant pocdhfr and powdhfr genes. The mutant DHFR proteins showed structural changes at the pyrimethamine binding site in-silico, confirmed by a 4-times increase in pyrimethamine half-maximal inhibitory concentration in an Escherichia coli growth assay for the Phe57Leu-Ser58Arg mutant and 50-times increase for the Ala15Ser-Ser58Arg mutant, compared with the wild-type counterparts. INTERPRETATION: The widespread use of sulfadoxine-pyrimethamine for malaria chemoprevention might have exerted fortuitous selection pressure for dhfr mutations in P ovale spp. This calls for closer monitoring of dhfr and dhps mutations in P ovale spp. FUNDING: French Ministry of Health, Agence Nationale de la Recherche, and Global Emerging Infections Surveillance branch of the Armed Forces Health Surveillance Division.


Assuntos
Antimaláricos , Resistência a Medicamentos , Malária , Mutação , Plasmodium ovale , Pirimetamina , Tetra-Hidrofolato Desidrogenase , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Resistência a Medicamentos/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium ovale/genética , Plasmodium ovale/efeitos dos fármacos , Humanos , Malária/epidemiologia , Estudos Retrospectivos , África Subsaariana/epidemiologia , Proteínas de Protozoários/genética , Quênia/epidemiologia
6.
PLoS One ; 19(6): e0298585, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38900782

RESUMO

Single nucleotide polymorphisms (SNPs) in the Plasmodium falciparum multi-drug resistance protein 1 (Pfmrp1) gene have previously been reported to confer resistance to Artemisinin-based Combination Therapies (ACTs) in Southeast Asia. A total of 300 samples collected from six sites between 2008 and 2019 under an ongoing malaria drug sensitivity patterns in Kenya study were evaluated for the presence of SNPs at Pfmrp1 gene codons: H191Y, S437A, I876V, and F1390I using the Agena MassARRAY® platform. Each isolate was further tested against artemisinin (ART), lumefantrine (LU), amodiaquine (AQ), mefloquine (MQ), quinine (QN), and chloroquine (CQ) using malaria the SYBR Green I-based method to determine their in vitro drug sensitivity. Of the samples genotyped, polymorphism at Pfmrp1 codon I876V was the most frequent, with 59.3% (163/275) mutants, followed by F1390I, 7.2% (20/278), H191Y, 4.0% (6/151), and S437A, 3.3% (9/274). A significant decrease in median 50% inhibition concentrations (IC50s) and interquartile range (IQR) was noted; AQ from 2.996 ng/ml [IQR = 2.604-4.747, n = 51] in 2008 to 1.495 ng/ml [IQR = 0.7134-3.318, n = 40] (P<0.001) in 2019, QN from 59.64 ng/ml [IQR = 29.88-80.89, n = 51] in 2008 to 18.10 ng/ml [IQR = 11.81-26.92, n = 42] (P<0.001) in 2019, CQ from 35.19 ng/ml [IQR = 16.99-71.20, n = 30] in 2008 to 6.699 ng/ml [IQR = 4.976-9.875, n = 37] (P<0.001) in 2019, and ART from 2.680 ng/ml [IQR = 1.608-4.857, n = 57] in 2008 to 2.105 ng/ml [IQR = 1.266-3.267, n = 47] (P = 0.0012) in 2019, implying increasing parasite sensitivity to the drugs over time. However, no significant variations were observed in LU (P = 0.2692) and MQ (P = 0.0939) respectively, suggesting stable parasite responses over time. There was no statistical significance between the mutation at 876 and parasite sensitivity to selected antimalarials tested, suggesting stable sensitivity for the parasites with 876V mutations. These findings show that Kenyan parasite strains are still sensitive to AQ, QN, CQ, ART, LU, and MQ. Despite the presence of Pfmrp1 mutations in parasites among the population.


Assuntos
Antimaláricos , Combinação Arteméter e Lumefantrina , Malária Falciparum , Plasmodium falciparum , Polimorfismo de Nucleotídeo Único , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Humanos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Quênia , Mefloquina/farmacologia , Mefloquina/uso terapêutico , Amodiaquina/farmacologia , Amodiaquina/uso terapêutico , Resistência a Medicamentos/genética , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Quinina/farmacologia , Quinina/uso terapêutico , Masculino , Feminino
7.
Int J Infect Dis ; 132: 17-25, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37061211

RESUMO

OBJECTIVES: This study examined the treatment response of mixed vs single-species Plasmodium falciparum infections to artemisinin-based combination therapies (ACTs). METHODS: A total of 1211 blood samples collected on days 0, 7, 14, 21, 28, 35, and 42 from 173 individuals enrolled in two randomized ACT efficacy studies were tested for malaria using 18s ribosomal RNA-based real-time polymerase chain reaction. All recurrent parasitemia were characterized for Plasmodium species composition and time to reinfection during 42-day follow-up compared across ACTs. RESULTS: Day 0 samples had 71.1% (116/163) single P. falciparum infections and 28.2% (46/163) coinfections. A total of 54.0% (88/163) of individuals tested positive for Plasmodium at least once between days 7-42. A total of 19.3% (17/88) of individuals with recurrent infections were infected with a different Plasmodium species than observed at day 0, with 76.5% (13/17) of these "hidden" infections appearing after clearing P. falciparum present at day 0. Artesunate-mefloquine (16.4 hours) and dihydroartemisinin-piperaquine (17.6 hours) had increased clearance rates over artemether-lumefantrine (21.0 hours). Dihydroartemisinin-piperaquine exhibited the longest duration of reinfection prophylaxis. Cure rates were comparable across each species composition. CONCLUSION: No differences in clearance rates were found depending on whether the infection contained species other than P. falciparum. Significantly longer durations of protection were observed for individuals treated with dihydroartemisinin-piperaquine.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Quinolinas , Humanos , Antimaláricos/uso terapêutico , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/uso terapêutico , Combinação de Medicamentos , Quênia , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Plasmodium falciparum , Quinolinas/uso terapêutico , Reinfecção , Estudos Retrospectivos
8.
Methods Protoc ; 1(2)2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31164561

RESUMO

Qß is a positive (+) single-stranded RNA bacteriophage covered by a 25 nm icosahedral shell. Qß belongs to the family of Leviviridae and is found throughout the world (bacterial isolates and sewage). The genome of Qß is about 4.2 kb, coding for four proteins. This genome is surrounded by 180 copies of coat proteins (capsomers) each comprised of 132 residues of amino acids. The other proteins, the subunit II (ß) of a replicase, the maturation protein (A2) and the read-through or minor coat protein (A1), play a key role in phage infection. With the replicase protein, which lacks proofreading activity, as well as its short replication time, and high population size, Qß phage has attractive features for in vitro evolution. The A1 protein gene shares the same initiation codon with the coat protein gene and is produced during translation when the coat protein's UGA stop codon triplet (about 400 nucleotides from the initiation) is suppressed by a low level of ribosome misincorporation of tryptophan. Thus, A1 is termed the read-through protein. This RNA phage platform technology not only serves to display foreign peptides but is also exceptionally suited to address questions about in vitro evolution. The C-terminus of A1 protein confers to this RNA phage platform an exceptional feature of not only a linker for foreign peptide to be displayed also a model for evolution. This platform was used to present a peptide library of the G-H loop of the capsid region P1 of the foot-and-mouth disease virus (FMDV) called VP1 protein. The library was exposed on the exterior surface of Qß phages, evolved and selected with the monoclonal antibodies (mAbs) SD6 of the FMDV. These hybrid phages could principally be good candidates for FMDV vaccine development. Separately, the membrane proximal external region (MPER) of human immunodeficiency virus type 1 (HIV-1) epitopes was fused with the A1 proteins and exposed on the Qß phage exterior surface. The engineered phages with MPER epitopes were recognized by anti-MPER specific antibodies. This system could be used to overcome the challenge of effective presentation of MPER to the immune system. A key portion of this linear epitope could be randomized and evolved with the Qß system. Overall, antigens and epitopes of RNA viruses relevant to public health can be randomized, evolved and selected in pools using the proposed Qß model to overcome their plasticity and the challenge of vaccine development. Major epitopes of a particular virus can be engineered or displayed on the Qß phage surface and used for vaccine efficacy evaluation, thus avoiding the use of live viruses.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa