Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Dev Biol ; 434(1): 24-35, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29166577

RESUMO

Cell cycle-related kinase (CCRK) is a conserved regulator of ciliogenesis whose loss in mice leads to a wide range of developmental defects, including exencephaly, preaxial polydactyly, skeletal abnormalities, and microphthalmia. Here, we investigate the role of CCRK in mouse eye development. Ccrk mutants show dramatic patterning defects, with an expansion of the optic stalk domain into the optic cup, as well as an expansion of the retinal pigment epithelium (RPE) into neural retina (NR) territory. In addition, Ccrk mutants display a shortened optic stalk. These defects are associated with bimodal changes in Hedgehog (Hh) pathway activity within the eye, including the loss of proximal, high level responses but a gain in distal, low level responses. We simultaneously removed the Hh activator GLI2 in Ccrk mutants (Ccrk-/-;Gli2-/-), which resulted in rescue of optic cup patterning and exacerbation of optic stalk length defects. Next, we disrupted the Hh pathway antagonist GLI3 in mutants lacking CCRK (Ccrk-/-;Gli3-/-), which lead to even greater expansion of the RPE markers into the NR domain and a complete loss of NR specification within the optic cup. These results indicate that CCRK functions in eye development by both positively and negatively regulating the Hh pathway, and they reveal distinct requirements for Hh signaling in patterning and morphogenesis of the eyes.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Embrião de Mamíferos/embriologia , Olho/embriologia , Proteínas Hedgehog/metabolismo , Organogênese/fisiologia , Transdução de Sinais/fisiologia , Proteína Gli2 com Dedos de Zinco/metabolismo , Animais , Quinases Ciclina-Dependentes/genética , Embrião de Mamíferos/citologia , Olho/citologia , Feminino , Proteínas Hedgehog/genética , Masculino , Camundongos , Camundongos Mutantes , Proteína Gli2 com Dedos de Zinco/genética , Quinase Ativadora de Quinase Dependente de Ciclina
2.
Dev Biol ; 430(1): 32-40, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28778798

RESUMO

Patterning of the vertebrate eye into optic stalk, retinal pigment epithelium (RPE) and neural retina (NR) territories relies on a number of signaling pathways, but how these signals are interpreted by optic progenitors is not well understood. The primary cilium is a microtubule-based organelle that is essential for Hedgehog (Hh) signaling, but it has also been implicated in the regulation of other signaling pathways. Here, we show that the optic primordium is ciliated during early eye development and that ciliogenesis is essential for proper patterning and morphogenesis of the mouse eye. Ift172 mutants fail to generate primary cilia and exhibit patterning defects that resemble those of Gli3 mutants, suggesting that cilia are required to restrict Hh activity during eye formation. Ift122 mutants, which produce cilia with abnormal morphology, generate optic vesicles that fail to invaginate to produce the optic cup. These mutants also lack formation of the lens, RPE and NR. Such phenotypic features are accompanied by strong, ectopic Hh pathway activity, evidenced by altered gene expression patterns. Removal of GLI2 from Ift122 mutants rescued several aspects of optic cup and lens morphogenesis as well as RPE and NR specification. Collectively, our data suggest that proper assembly of primary cilia is critical for restricting the Hedgehog pathway during eye formation in the mouse.


Assuntos
Cílios/metabolismo , Olho/embriologia , Olho/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Animais , Padronização Corporal , Proteínas do Citoesqueleto , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Cristalino/citologia , Cristalino/metabolismo , Camundongos , Modelos Biológicos , Morfogênese , Mutação/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteína Gli2 com Dedos de Zinco
3.
Proc Natl Acad Sci U S A ; 108(4): 1456-61, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21209331

RESUMO

Primary cilia are required for proper Sonic Hedgehog (Shh) signaling in mammals. However, their role in the signal transduction process remains unclear. We have identified sister of open brain (sopb), a null allele of mouse Intraflagellar transport protein 122 (Ift122). IFT122 negatively regulates the Shh pathway in the cilium at a step downstream of the Shh ligand and the transmembrane protein Smoothened, but upstream of the Gli2 transcription factor. Ift122(sopb) mutants generate primary cilia, but they show features of defective retrograde intraflagellar transport. IFT122 controls the ciliary localization of Shh pathway regulators in different ways. Disruption of IFT122 leads to accumulation of Gli2 and Gli3 at cilia tips while blocking the ciliary localization of the antagonist TULP3. Suppressor of Fused and Smoothened localize to the cilium through an IFT122-independent mechanism. We propose that the balance between positive and negative regulators of the Shh pathway at the cilium tip controls the output of the pathway and that Shh signaling regulates this balance through intraflagellar transport.


Assuntos
Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Animais , Western Blotting , Células Cultivadas , Cílios/genética , Cílios/ultraestrutura , Proteínas do Citoesqueleto , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Hedgehog/genética , Imuno-Histoquímica , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas/genética , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco
4.
Sci Adv ; 8(35): eadd2696, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054355

RESUMO

Vertebrate myoblast fusion allows for multinucleated muscle fibers to compound the size and strength of mononucleated cells, but the evolution of this important process is unknown. We investigated the evolutionary origins and function of membrane-coalescing agents Myomaker and Myomixer in various groups of chordates. Here, we report that Myomaker likely arose through gene duplication in the last common ancestor of tunicates and vertebrates, while Myomixer appears to have evolved de novo in early vertebrates. Functional tests revealed a complex evolutionary history of myoblast fusion. A prevertebrate phase of muscle multinucleation driven by Myomaker was followed by the later emergence of Myomixer that enables the highly efficient fusion system of vertebrates. Evolutionary comparisons between vertebrate and nonvertebrate Myomaker revealed key structural and mechanistic insights into myoblast fusion. Thus, our findings suggest an evolutionary model of chordate fusogens and illustrate how new genes shape the emergence of novel morphogenetic traits and mechanisms.

5.
Hum Mol Genet ; 18(10): 1740-54, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19286674

RESUMO

Tubby-like protein 3 (TULP3) is required for proper embryonic development in mice. Disruption of mouse Tulp3 results in morphological defects in the embryonic craniofacial regions, the spinal neural tube and the limbs. Here, we show that TULP3 functions as a novel negative regulator of Sonic hedgehog (Shh) signaling in the mouse. In Tulp3 mutants, ventral cell types in the lumbar neural tube, which acquire their identities in response to Shh signaling, are ectopically specified at the expense of dorsal cell types. Genetic epistasis experiments show that this ventralized phenotype occurs independently of Shh and the transmembrane protein Smoothened, but it is dependent on the transcription factor Gli2. The ventralized phenotype is also dependent on the kinesin II subunit Kif3A, which is required for intraflagellar transport and ciliogenesis. In addition, TULP3 is required for proper Shh-dependent limb patterning and for maintaining the correct balance between differentiation and proliferation in the neural tube. Finally, the localization of TULP3 to the tips of primary cilia raises the possibility that it regulates the Hedgehog pathway within this structure.


Assuntos
Padronização Corporal , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Proteínas/metabolismo , Transdução de Sinais , Animais , Regulação para Baixo , Embrião de Mamíferos , Feminino , Proteínas Hedgehog/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Mutação , Tubo Neural/embriologia , Tubo Neural/metabolismo , Proteínas/genética , Medula Espinal/embriologia , Medula Espinal/metabolismo
6.
Dev Biol ; 321(1): 27-39, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18590716

RESUMO

Signaling by Sonic hedgehog (Shh) represents an important process by which many types of neural progenitor cells become properly organized along the dorsal-ventral axis of the vertebrate neural tube in a concentration-dependent manner. However, the mechanism by which Shh signals are transduced with high fidelity and the relationship between the Shh signaling pathway and other patterning systems remain unclear. Here we focus on the role of FK506-binding protein 8 (FKBP8) in controlling neural cell identity through its antagonism of the Shh pathway. Our data indicate that disruption of FKBP8 function activates the Shh signaling pathway cell-autonomously at a step that is independent of the transmembrane protein Smoothened but dependent on the Gli2 transcription factor. This activation is also dependent on the kinesin-2 subunit Kif3a, a component of the intraflagellar transport (IFT) machinery used to generate cilia. Our data also indicate that non-cell-autonomous effects of the Fkbp8 mutation further contribute to the neural patterning phenotype and suggest that FKBP8 plays an indirect role in promoting Bone morphogenetic protein (BMP) signaling through antagonism of the Shh pathway.


Assuntos
Cinesinas/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Tubo Neural/citologia , Tubo Neural/embriologia , Transdução de Sinais , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Embrião de Mamíferos/metabolismo , Proteínas Hedgehog/metabolismo , Camundongos , Proteínas de Ligação a Tacrolimo/genética , Proteína Gli2 com Dedos de Zinco
7.
Curr Biol ; 12(18): 1628-32, 2002 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-12372258

RESUMO

Precise patterning of cell types along the dorsal-ventral axis of the spinal cord is essential to establish functional neural circuits. In order to prove the feasibility of studying a single biological process through random mutagenesis in the mouse, we have identified recessive ENU-induced mutations in six genes that prevent normal specification of ventral cell types in the spinal cord. We positionally cloned the genes responsible for two of the mutant phenotypes, smoothened and dispatched, which are homologs of Drosophila Hh pathway components. The Dispatched homolog1 (Disp1) mutation causes lethality at midgestation and prevents specification of ventral cell types in the neural tube, a phenotype identical to the Smoothened (Smo) null phenotype. As in Drosophila, mouse Disp1 is required to move Shh away from the site of synthesis. Despite the existence of a second mouse disp homolog, Disp1 is essential for long-range signaling by both Shh and Ihh ligands. Our data indicate that Shh signaling is required within the notochord to maintain Shh expression and to prevent notochord degeneration. Disp1, unlike Smo, is not required for this juxtacrine signaling by Shh.


Assuntos
Proteínas de Drosophila , Proteínas de Membrana/fisiologia , Receptores Acoplados a Proteínas G , Transativadores/fisiologia , Sequência de Aminoácidos , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Drosophila , Desenvolvimento Embrionário e Fetal/genética , Proteínas Hedgehog , Hibridização In Situ , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Dados de Sequência Molecular , Mutação , Fenótipo , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Receptor Smoothened , Transativadores/deficiência , Transativadores/genética
8.
Nat Genet ; 43(6): 547-53, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21552265

RESUMO

Cilia-associated human genetic disorders are striking in the diversity of their abnormalities and their complex inheritance. Inactivation of the retrograde ciliary motor by mutations in DYNC2H1 causes skeletal dysplasias that have strongly variable expressivity. Here we define previously unknown genetic relationships between Dync2h1 and other genes required for ciliary trafficking. Mutations in mouse Dync2h1 disrupt cilia structure, block Sonic hedgehog signaling and cause midgestation lethality. Heterozygosity for Ift172, a gene required for anterograde ciliary trafficking, suppresses cilia phenotypes, Sonic hedgehog signaling defects and early lethality of Dync2h1 homozygotes. Ift122, like Dync2h1, is required for retrograde ciliary trafficking, but reduction of Ift122 gene dosage also suppresses the Dync2h1 phenotype. These genetic interactions illustrate the cell biology underlying ciliopathies and argue that mutations in intraflagellar transport genes cause their phenotypes because of their roles in cilia architecture rather than direct roles in signaling.


Assuntos
Cílios/genética , Dineínas do Citoplasma/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto , Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Camundongos , Mutação
9.
Dev Cell ; 18(2): 237-47, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20159594

RESUMO

Recent findings indicate that mammalian Sonic hedgehog (Shh) signal transduction occurs within primary cilia, although the cell biological mechanisms underlying both Shh signaling and ciliogenesis have not been fully elucidated. We show that an uncharacterized TBC domain-containing protein, Broad-minded (Bromi), is required for high-level Shh responses in the mouse neural tube. We find that Bromi controls ciliary morphology and proper Gli2 localization within the cilium. By use of a zebrafish model, we further show that Bromi is required for proper association between the ciliary membrane and axoneme. Bromi physically interacts with cell cycle-related kinase (CCRK), whose Chlamydomonas homolog regulates flagellar length. Biochemical and genetic interaction data indicate that Bromi promotes CCRK stability and function. We propose that Bromi and CCRK control the structure of the primary cilium by coordinating assembly of the axoneme and ciliary membrane, allowing Gli proteins to be properly activated in response to Shh signaling.


Assuntos
Proteínas de Transporte/fisiologia , Cílios/fisiologia , Quinases Ciclina-Dependentes/fisiologia , Proteínas Hedgehog/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Sequência de Bases , Padronização Corporal , Proteínas de Transporte/genética , Cílios/ultraestrutura , Clonagem Molecular , DNA/genética , Estabilidade Enzimática , Epistasia Genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Mutação , Tubo Neural/embriologia , Gravidez , Transdução de Sinais , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia , Quinase Ativadora de Quinase Dependente de Ciclina
10.
Methods Cell Biol ; 93: 347-69, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20409825

RESUMO

Intraflagellar transport (IFT) has been studied for decades in model systems such as Chlamydomonas and Caenorhabditis elegans. More recently, IFT has been investigated using genetic approaches in mammals using the mouse as a model system. Through such studies, a new appreciation of the importance of IFT and cilia in mammalian signal transduction has emerged. Specifically, IFT has been shown to play a key role in controlling signaling by Sonic and Indian Hedgehog (Hh) ligands. The effects of mutations in IFT components on Sonic Hh signaling in the embryo are complex and differ depending on the nature of the components, alleles, and tissues examined. For this reason, we provide a basis for analyzing the phenotype as a guide for those investigators who study IFT in cell culture or use invertebrate systems and wish to extend their studies to include development of the mouse embryo. We provide an overview of Sonic Hh-dependent tissue patterning in the developing neural tube and limb buds, the two systems in which it has been studied most extensively, and we show examples of how this patterning is disrupted by mutations in mouse IFT components.


Assuntos
Transporte Biológico/genética , Padronização Corporal/fisiologia , Flagelos , Proteínas Hedgehog/metabolismo , Mutação , Transdução de Sinais/fisiologia , Animais , Transporte Biológico/fisiologia , Cílios/metabolismo , Cílios/ultraestrutura , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Flagelos/metabolismo , Flagelos/ultraestrutura , Proteínas Hedgehog/genética , Imuno-Histoquímica/instrumentação , Imuno-Histoquímica/métodos , Hibridização In Situ/instrumentação , Hibridização In Situ/métodos , Camundongos
11.
Annu Rev Cell Dev Biol ; 23: 345-73, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17506691

RESUMO

Recent studies have revealed unexpected connections between the mammalian Hedgehog (Hh) signal transduction pathway and the primary cilium, a microtubule-based organelle that protrudes from the surface of most vertebrate cells. Intraflagellar transport proteins, which are required for the construction of cilia, are essential for all responses to mammalian Hh proteins, and proteins required for Hh signal transduction are enriched in primary cilia. The phenotypes of different mouse mutants that affect ciliary proteins suggest that cilia may act as processive machines that organize sequential steps in the Hh signal transduction pathway. Cilia on vertebrate cells are likely to be important in additional developmental signaling pathways and are required for PDGF receptor alpha signaling in cultured fibroblasts. Cilia are not essential for either canonical or noncanonical Wnt signaling, although cell-type-specific modulation of cilia components may link cilia and Wnt signaling in some tissues. Because ciliogenesis in invertebrates is limited to a very small number of specialized cell types, the role of cilia in developmental signaling pathways is likely a uniquely vertebrate phenomenon.


Assuntos
Padronização Corporal , Cílios/fisiologia , Proteínas Hedgehog/metabolismo , Tubo Neural/crescimento & desenvolvimento , Animais , Doenças Genéticas Inatas/metabolismo , Humanos , Camundongos , Transporte Proteico/genética , Transdução de Sinais
12.
Dev Biol ; 290(1): 1-12, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16364285

RESUMO

Sonic hedgehog (Shh) signaling is required for the growth and patterning of many tissues in vertebrate embryos, but important aspects of the Shh signal transduction pathway are poorly understood. For example, the vesicle transport protein Rab23 is a cell autonomous negative regulator of Shh signaling, but the process affected by Rab23 has not been defined. Here, we demonstrate that Rab23 acts upstream of Gli transcription factors in patterning neural cell types in the spinal cord. Double mutant analysis indicates that the primary target of Rab23 is the Gli2 activator and that Rab23 and Gli3 repressor have additive effects on patterning. Analysis of Gli3 protein suggests that Rab23 also has a role in promoting the production of Gli3 repressor. Although the membrane proteins Patched and Smoothened change subcellular localization in response to Shh, double mutant analysis demonstrates that Rab23 does not work through either Patched or Smoothened. Instead, Rab23 appears to regulate subcellular localization of essential components of the Hedgehog pathway that act downstream of Smoothened and upstream of Gli proteins.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Padronização Corporal , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Hedgehog , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Mutantes , Mutação , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Receptores Patched , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened , Medula Espinal/embriologia , Medula Espinal/metabolismo , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco , Proteínas rab de Ligação ao GTP/genética
13.
Proc Natl Acad Sci U S A ; 102(17): 5913-9, 2005 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-15755804

RESUMO

Many aspects of the genetic control of mammalian embryogenesis cannot be extrapolated from other animals. Taking a forward genetic approach, we have induced recessive mutations by treatment of mice with ethylnitrosourea and have identified 43 mutations that affect early morphogenesis and patterning, including 38 genes that have not been studied previously. The molecular lesions responsible for 14 mutations were identified, including mutations in nine genes that had not been characterized previously. Some mutations affect vertebrate-specific components of conserved signaling pathways; for example, at least five mutations affect previously uncharacterized regulators of the Sonic hedgehog (Shh) pathway. Approximately half of all of the mutations affect the initial establishment of the body plan, and several of these produce phenotypes that have not been described previously. A large fraction of the genes identified affect cell migration, cellular organization, and cell structure. The findings indicate that phenotype-based genetic screens provide a direct and unbiased method to identify essential regulators of mammalian development.


Assuntos
Camundongos/embriologia , Camundongos/genética , Animais , Padronização Corporal , Mapeamento Cromossômico , Genes Recessivos , Mamíferos , Morfogênese , Mutação , Sistema Nervoso/embriologia , Especificidade da Espécie
14.
Development ; 131(9): 2149-59, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15105374

RESUMO

Sonic hedgehog (SHH) is a secreted morphogen that regulates the patterning and growth of many tissues in the developing mouse embryo, including the central nervous system (CNS). We show that a member of the FK506-binding protein family, FKBP8, is an essential antagonist of SHH signaling in CNS development. Loss of FKBP8 causes ectopic and ligand-independent activation of the Shh pathway, leading to expansion of ventral cell fates in the posterior neural tube and suppression of eye development. Although it is expressed broadly, FKBP8 is required to antagonize SHH signaling primarily in neural tissues, suggesting that hedgehog signal transduction is subject to cell-type specific modulation during mammalian development.


Assuntos
Padronização Corporal , Sistema Nervoso Central/embriologia , Embrião de Mamíferos/fisiologia , Transdução de Sinais/fisiologia , Proteínas de Ligação a Tacrolimo/metabolismo , Transativadores/metabolismo , Animais , Sistema Nervoso Central/anatomia & histologia , Sistema Nervoso Central/metabolismo , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/anatomia & histologia , Olho/anatomia & histologia , Olho/embriologia , Marcação de Genes , Proteínas Hedgehog , Hibridização In Situ , Camundongos , Camundongos Knockout , Fenótipo , Proteínas de Ligação a Tacrolimo/genética , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa