Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 35(3): 280-90, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19683493

RESUMO

Degradation by the proteasome typically requires substrate ubiquitination. Two ubiquitin receptors exist in the proteasome, S5a/Rpn10 and Rpn13. Whereas Rpn13 has only one ubiquitin-binding surface, S5a binds ubiquitin with two independent ubiquitin-interacting motifs (UIMs). Here, we use nuclear magnetic resonance (NMR) and analytical ultracentrifugation to define at atomic level resolution how S5a binds K48-linked diubiquitin, in which K48 of one ubiquitin subunit (the "proximal" one) is covalently bonded to G76 of the other (the "distal" subunit). We demonstrate that S5a's UIMs bind the two subunits simultaneously with a preference for UIM2 binding to the proximal subunit while UIM1 binds to the distal one. In addition, NMR experiments reveal that Rpn13 and S5a bind K48-linked diubiquitin simultaneously with subunit specificity, and a model structure of S5a and Rpn13 bound to K48-linked polyubiquitin is provided. Altogether, our data demonstrate that S5a is highly adaptive and cooperative toward binding ubiquitin chains.


Assuntos
Glicoproteínas de Membrana/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Complexo de Endopeptidases do Proteassoma/química , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas de Ligação a RNA , Ubiquitina/química , Ubiquitinação , Ultracentrifugação
2.
Nucleic Acids Res ; 43(2): 1056-68, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25550423

RESUMO

PrimPol is a recently identified polymerase involved in eukaryotic DNA damage tolerance, employed in both re-priming and translesion synthesis mechanisms to bypass nuclear and mitochondrial DNA lesions. In this report, we investigate how the enzymatic activities of human PrimPol are regulated. We show that, unlike other TLS polymerases, PrimPol is not stimulated by PCNA and does not interact with it in vivo. We identify that PrimPol interacts with both of the major single-strand binding proteins, RPA and mtSSB in vivo. Using NMR spectroscopy, we characterize the domains responsible for the PrimPol-RPA interaction, revealing that PrimPol binds directly to the N-terminal domain of RPA70. In contrast to the established role of SSBs in stimulating replicative polymerases, we find that SSBs significantly limit the primase and polymerase activities of PrimPol. To identify the requirement for this regulation, we employed two forward mutation assays to characterize PrimPol's replication fidelity. We find that PrimPol is a mutagenic polymerase, with a unique error specificity that is highly biased towards insertion-deletion errors. Given the error-prone disposition of PrimPol, we propose a mechanism whereby SSBs greatly restrict the contribution of this enzyme to DNA replication at stalled forks, thus reducing the mutagenic potential of PrimPol during genome replication.


Assuntos
DNA Primase/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas Mitocondriais/metabolismo , Enzimas Multifuncionais/metabolismo , Proteína de Replicação A/metabolismo , Primers do DNA/biossíntese , Replicação do DNA , Humanos , Mutagênese , Antígeno Nuclear de Célula em Proliferação/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteína de Replicação A/química
3.
Biochemistry ; 52(21): 3618-28, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23672618

RESUMO

Since its discovery in the late 1970s, the ubiquitin-proteasome system (UPS) has become recognized as the major pathway for regulated cellular proteolysis. Processes such as cell cycle control, pathogen resistance, and protein quality control rely on selective protein degradation at the proteasome for homeostatic function. Perhaps as a consequence of the importance of this pathway, and the genesis of severe diseases upon its dysregulation, protein degradation by the UPS is highly controlled from the level of substrate recognition to proteolysis. Technological advances over the past decade have created an explosion of structural and mechanistic information that has underscored the complexity of the proteasome and its upstream regulatory factors. Significant insights have come from the study of the 19S proteasome regulatory particle (RP) responsible for recognition and processing of ubiquitinated substrates destined for proteolysis. Established as a highly dynamic proteasome activator, the RP has a large number of both permanent and transient components with specialized functional roles that are critical for proteasome function. In this review, we highlight recent mechanistic developments in the study of proteasome activation by the RP and how they provide context to our current understanding of the UPS.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Ativação Enzimática , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Conformação Proteica , Saccharomyces cerevisiae/enzimologia , Especificidade por Substrato
4.
Methods Enzymol ; 592: 49-76, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28668130

RESUMO

Multiprotein machines drive virtually all primary cellular processes. Modular multidomain proteins are widely distributed within these dynamic complexes because they provide the flexibility needed to remodel structure as well as rapidly assemble and disassemble components of the machinery. Understanding the functional dynamics of modular multidomain proteins is a major challenge confronting structural biology today because their structure is not fixed in time. Small-angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) spectroscopy have proven particularly useful for the analysis of the structural dynamics of modular multidomain proteins because they provide highly complementary information for characterizing the architectural landscape accessible to these proteins. SAXS provides a global snapshot of all architectural space sampled by a molecule in solution. Furthermore, SAXS is sensitive to conformational changes, organization and oligomeric states of protein assemblies, and the existence of flexibility between globular domains in multiprotein complexes. The power of NMR to characterize dynamics provides uniquely complementary information to the global snapshot of the architectural ensemble provided by SAXS because it can directly measure domain motion. In particular, NMR parameters can be used to define the diffusion of domains within modular multidomain proteins, connecting the amplitude of interdomain motion to the architectural ensemble derived from SAXS. Our laboratory has been studying the roles of modular multidomain proteins involved in human DNA replication using SAXS and NMR. Here, we present the procedure for acquiring and analyzing SAXS and NMR data, using DNA primase and replication protein A as examples.


Assuntos
DNA Primase/química , Ressonância Magnética Nuclear Biomolecular/métodos , Proteína de Replicação A/química , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos , Humanos , Complexos Multiproteicos/química , Conformação Proteica , Domínios Proteicos
5.
Science ; 355(6327)2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28232525

RESUMO

DNA charge transport chemistry offers a means of long-range, rapid redox signaling. We demonstrate that the [4Fe4S] cluster in human DNA primase can make use of this chemistry to coordinate the first steps of DNA synthesis. Using DNA electrochemistry, we found that a change in oxidation state of the [4Fe4S] cluster acts as a switch for DNA binding. Single-atom mutations that inhibit this charge transfer hinder primase initiation without affecting primase structure or polymerization. Generating a single base mismatch in the growing primer duplex, which attenuates DNA charge transport, inhibits primer truncation. Thus, redox signaling by [4Fe4S] clusters using DNA charge transport regulates primase binding to DNA and illustrates chemistry that may efficiently drive substrate handoff between polymerases during DNA replication.


Assuntos
DNA Primase/química , DNA/metabolismo , Proteínas Ferro-Enxofre/química , Transporte Biológico , DNA/biossíntese , DNA Primase/genética , Replicação do DNA , Eletrólise , Humanos , Proteínas Ferro-Enxofre/genética , Mutação , Oxirredução , Polimerização , Ligação Proteica , Domínios Proteicos
6.
Elife ; 62017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29130884

RESUMO

Despite its central role in protein degradation little is known about the molecular mechanisms that sense, maintain, and regulate steady state concentration of ubiquitin in the cell. Here, we describe a novel mechanism for regulation of ubiquitin homeostasis that is mediated by phosphorylation of ubiquitin at the Ser57 position. We find that loss of Ppz phosphatase activity leads to defects in ubiquitin homeostasis that are at least partially attributable to elevated levels of Ser57 phosphorylated ubiquitin. Phosphomimetic mutation at the Ser57 position of ubiquitin conferred increased rates of endocytic trafficking and ubiquitin turnover. These phenotypes are associated with bypass of recognition by endosome-localized deubiquitylases - including Doa4 which is critical for regulation of ubiquitin recycling. Thus, ubiquitin homeostasis is significantly impacted by the rate of ubiquitin flux through the endocytic pathway and by signaling pathways that converge on ubiquitin itself to determine whether it is recycled or degraded in the vacuole.


Assuntos
Endocitose , Processamento de Proteína Pós-Traducional , Ubiquitina/metabolismo , Leveduras/metabolismo , Homeostase , Fosfoproteínas Fosfatases/deficiência , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Nat Commun ; 8: 15222, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28534480

RESUMO

DNA damage and secondary structures can stall the replication machinery. Cells possess numerous tolerance mechanisms to complete genome duplication in the presence of such impediments. In addition to translesion synthesis (TLS) polymerases, most eukaryotic cells contain a multifunctional replicative enzyme called primase-polymerase (PrimPol) that is capable of directly bypassing DNA damage by TLS, as well as repriming replication downstream of impediments. Here, we report that PrimPol is recruited to reprime through its interaction with RPA. Using biophysical and crystallographic approaches, we identify that PrimPol possesses two RPA-binding motifs and ascertained the key residues required for these interactions. We demonstrate that one of these motifs is critical for PrimPol's recruitment to stalled replication forks in vivo. In addition, biochemical analysis reveals that RPA serves to stimulate the primase activity of PrimPol. Together, these findings provide significant molecular insights into PrimPol's mode of recruitment to stalled forks to facilitate repriming and restart.


Assuntos
DNA Primase/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Enzimas Multifuncionais/metabolismo , Proteína de Replicação A/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Galinhas , Cromatina/metabolismo , Cristalografia por Raios X , DNA Primase/química , DNA Polimerase Dirigida por DNA/química , Células HEK293 , Humanos , Modelos Biológicos , Enzimas Multifuncionais/química , Ligação Proteica , Domínios Proteicos , Proteína de Replicação A/química , Xenopus
8.
Science ; 357(6348)2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28729485

RESUMO

Baranovskiy et al and Pellegrini argue that, based on structural data, the path for charge transfer through the [4Fe4S] domain of primase is not feasible. Our manuscript presents electrochemical data directly showing charge transport through DNA to the [4Fe4S] cluster of a primase p58C construct and a reversible switch in the DNA-bound signal with oxidation/reduction, which is inhibited by mutation of three tyrosine residues. Although the dispositions of tyrosines differ in different constructs, all are within range for microsecond electron transfer.


Assuntos
DNA Primase/química , Oxirredução , Transporte Biológico , DNA , Transporte de Elétrons , Humanos
9.
Cell Rep ; 14(11): 2683-94, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26971995

RESUMO

Myosin VI is critical for cargo trafficking and sorting during early endocytosis and autophagosome maturation, and abnormalities in these processes are linked to cancers, neurodegeneration, deafness, and hypertropic cardiomyopathy. We identify a structured domain in myosin VI, myosin VI ubiquitin-binding domain (MyUb), that binds to ubiquitin chains, especially those linked via K63, K11, and K29. Herein, we solve the solution structure of MyUb and MyUb:K63-linked diubiquitin. MyUb folds as a compact helix-turn-helix-like motif and nestles between the ubiquitins of K63-linked diubiquitin, interacting with distinct surfaces of each. A nine-amino-acid extension at the C-terminal helix (Helix2) of MyUb is required for myosin VI interaction with endocytic and autophagic adaptors. Structure-guided mutations revealed that a functional MyUb is necessary for optineurin interaction. In addition, we found that an isoform-specific helix restricts MyUb binding to ubiquitin chains. This work provides fundamental insights into myosin VI interaction with ubiquitinated cargo and functional adaptors.


Assuntos
Cadeias Pesadas de Miosina/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Animais , Polarização de Fluorescência , Células HEK293 , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Ubiquitina/química , Ubiquitina/genética
10.
Structure ; 21(5): 753-65, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23562395

RESUMO

Juxtaposed to either or both ends of the proteasome core particle (CP) can exist a 19S regulatory particle (RP) that recognizes and prepares ubiquitinated proteins for proteolysis. RP triphosphatase proteins (Rpt1-Rpt6), which are critical for substrate translocation into the CP, bind chaperone-like proteins (Hsm3, Nas2, Nas6, and Rpn14) implicated in RP assembly. We used NMR and other biophysical methods to reveal that S. cerevisiae Rpt6's C-terminal domain undergoes dynamic helix-coil transitions enabled by helix-destabilizing glycines within its two most C-terminal α helices. Rpn14 binds selectively to Rpt6's four-helix bundle, with surprisingly high affinity. Loss of Rpt6's partially unfolded state by glycine substitution (Rpt6 G³6°,³87A) disrupts holoenzyme formation in vitro, an effect enhanced by Rpn14. S. cerevisiae lacking Rpn14 and incorporating Rpt6 G³6°,³87A demonstrate hallmarks of defective proteasome assembly and synthetic growth defects. Rpt4 and Rpt5 exhibit similar exchange, suggesting that conserved structural heterogeneity among Rpt proteins may facilitate RP-CP assembly.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Transporte/química , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Proteínas de Transporte/metabolismo , Glicina/química , Modelos Moleculares , Conformação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa