RESUMO
Importance: One of the biggest challenges when using anti-vascular endothelial growth factor (VEGF) agents to treat retinopathy of prematurity (ROP) is the need to perform long-term follow-up examinations to identify eyes at risk of ROP reactivation requiring retreatment. Objective: To evaluate whether an artificial intelligence (AI)-based vascular severity score (VSS) can be used to analyze ROP regression and reactivation after anti-VEGF treatment and potentially identify eyes at risk of ROP reactivation requiring retreatment. Design, Setting, and Participants: This prognostic study was a secondary analysis of posterior pole fundus images collected during the multicenter, double-blind, investigator-initiated Comparing Alternative Ranibizumab Dosages for Safety and Efficacy in Retinopathy of Prematurity (CARE-ROP) randomized clinical trial, which compared 2 different doses of ranibizumab (0.12 mg vs 0.20 mg) for the treatment of ROP. The CARE-ROP trial screened and enrolled infants between September 5, 2014, and July 14, 2016. A total of 1046 wide-angle fundus images obtained from 19 infants at predefined study time points were analyzed. The analyses of VSS were performed between January 20, 2021, and November 18, 2022. Interventions: An AI-based algorithm assigned a VSS between 1 (normal) and 9 (most severe) to fundus images. Main Outcomes and Measures: Analysis of VSS in infants with ROP over time and VSS comparisons between the 2 treatment groups (0.12 mg vs 0.20 mg of ranibizumab) and between infants who did and did not receive retreatment for ROP reactivation. Results: Among 19 infants with ROP in the CARE-ROP randomized clinical trial, the median (range) postmenstrual age at first treatment was 36.4 (34.7-39.7) weeks; 10 infants (52.6%) were male, and 18 (94.7%) were White. The mean (SD) VSS was 6.7 (1.9) at baseline and significantly decreased to 2.7 (1.9) at week 1 (P < .001) and 2.9 (1.3) at week 4 (P < .001). The mean (SD) VSS of infants with ROP reactivation requiring retreatment was 6.5 (1.9) at the time of retreatment, which was significantly higher than the VSS at week 4 (P < .001). No significant difference was found in VSS between the 2 treatment groups, but the change in VSS between baseline and week 1 was higher for infants who later required retreatment (mean [SD], 7.8 [1.3] at baseline vs 1.7 [0.7] at week 1) vs infants who did not (mean [SD], 6.4 [1.9] at baseline vs 3.0 [2.0] at week 1). In eyes requiring retreatment, higher baseline VSS was correlated with earlier time of retreatment (Pearson r = -0.9997; P < .001). Conclusions and Relevance: In this study, VSS decreased after ranibizumab treatment, consistent with clinical disease regression. In cases of ROP reactivation requiring retreatment, VSS increased again to values comparable with baseline values. In addition, a greater change in VSS during the first week after initial treatment was found to be associated with a higher risk of later ROP reactivation, and high baseline VSS was correlated with earlier retreatment. These findings may have implications for monitoring ROP regression and reactivation after anti-VEGF treatment.
Assuntos
Ranibizumab , Retinopatia da Prematuridade , Recém-Nascido , Lactente , Humanos , Masculino , Feminino , Ranibizumab/uso terapêutico , Retinopatia da Prematuridade/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular , Inteligência Artificial , Fundo de OlhoRESUMO
BACKGROUND: In 2018, IDx-DR was approved as a method to determine the degree of diabetic retinopathy (DR) using artificial intelligence (AI) by the FDA. METHODS: We integrated IDx-DR into the consultation at a diabetology focus clinic and report the agreement between IDx-DR and fundoscopy as well as IDx-DR and ophthalmological image assessment and the influence of different camera systems. RESULTS: Adequate image quality in miosis was achieved more frequently with the Topcon camera (nâ¯= 456; NW400, Topcon Medical Systems, Oakland, NJ, USA) compared with the Zeiss camera (nâ¯= 47; Zeiss VISUCAM 500, Carl Zeiss Meditec AG, Jena, Germany). Overall, IDx-DR analysis in miosis was possible in approximately 60% of the patients. All patients in whom IDx-DR analysis in miosis was not possible could be assessed by fundoscopy with dilated pupils. Within the group of images that could be evaluated, there was agreement between IDx-DR and ophthalmic fundoscopy in approximately 55%, overestimation of severity by IDx-DR in approximately 40% and underestimation in approximately 4%. The sensitivity (specificity) for detecting severe retinopathy requiring treatment was 95.7% (89.1%) for cases with fundus images that could be evaluated and 65.2% (66.7%) when all cases were considered (including those without images in miosis which could be evaluated). The kappa coefficient of 0.334 (pâ¯< 0.001) shows sufficient agreement between IDx-DR and physician's image analysis based on the fundus photograph, considering all patients with IDx-DR analysis that could be evaluated. The comparison between IDx-DR and the physician's funduscopy under the same conditions shows a low agreement with a kappa value of 0.168 (pâ¯< 0.001). CONCLUSION: The present study shows the possibilities and limitations of AI-assisted DR screening. A major limitation is that sufficient images cannot be obtained in miosis in approximately 40% of patients. When sufficient images were available the IDx-DR and ophthalmological diagnosis matched in more than 50% of cases. Underestimation of severity by IDx-DR occurred only rarely. For integration into an ophthalmologist's practice, this system seems suitable. Without access to an ophthalmologist the high rate of insufficient images in miosis represents an important limitation.