Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 398
Filtrar
1.
Nature ; 613(7945): 639-649, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36697862

RESUMO

Whether the human fetus and the prenatal intrauterine environment (amniotic fluid and placenta) are stably colonized by microbial communities in a healthy pregnancy remains a subject of debate. Here we evaluate recent studies that characterized microbial populations in human fetuses from the perspectives of reproductive biology, microbial ecology, bioinformatics, immunology, clinical microbiology and gnotobiology, and assess possible mechanisms by which the fetus might interact with microorganisms. Our analysis indicates that the detected microbial signals are likely the result of contamination during the clinical procedures to obtain fetal samples or during DNA extraction and DNA sequencing. Furthermore, the existence of live and replicating microbial populations in healthy fetal tissues is not compatible with fundamental concepts of immunology, clinical microbiology and the derivation of germ-free mammals. These conclusions are important to our understanding of human immune development and illustrate common pitfalls in the microbial analyses of many other low-biomass environments. The pursuit of a fetal microbiome serves as a cautionary example of the challenges of sequence-based microbiome studies when biomass is low or absent, and emphasizes the need for a trans-disciplinary approach that goes beyond contamination controls by also incorporating biological, ecological and mechanistic concepts.


Assuntos
Biomassa , Contaminação por DNA , Feto , Microbiota , Animais , Feminino , Humanos , Gravidez , Líquido Amniótico/imunologia , Líquido Amniótico/microbiologia , Mamíferos , Microbiota/genética , Placenta/imunologia , Placenta/microbiologia , Feto/imunologia , Feto/microbiologia , Reprodutibilidade dos Testes
2.
PLoS Genet ; 20(5): e1011295, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38820540

RESUMO

Bacterial symbionts, with their shorter generation times and capacity for horizontal gene transfer (HGT), play a critical role in allowing marine organisms to cope with environmental change. The closure of the Isthmus of Panama created distinct environmental conditions in the Tropical Eastern Pacific (TEP) and Caribbean, offering a "natural experiment" for studying how closely related animals evolve and adapt under environmental change. However, the role of bacterial symbionts in this process is often overlooked. We sequenced the genomes of endosymbiotic bacteria in two sets of sister species of chemosymbiotic bivalves from the genera Codakia and Ctena (family Lucinidae) collected on either side of the Isthmus, to investigate how differing environmental conditions have influenced the selection of symbionts and their metabolic capabilities. The lucinid sister species hosted different Candidatus Thiodiazotropha symbionts and only those from the Caribbean had the genetic potential for nitrogen fixation, while those from the TEP did not. Interestingly, this nitrogen-fixing ability did not correspond to symbiont phylogeny, suggesting convergent evolution of nitrogen fixation potential under nutrient-poor conditions. Reconstructing the evolutionary history of the nifHDKT operon by including other lucinid symbiont genomes from around the world further revealed that the last common ancestor (LCA) of Ca. Thiodiazotropha lacked nif genes, and populations in oligotrophic habitats later re-acquired the nif operon through HGT from the Sedimenticola symbiont lineage. Our study suggests that HGT of the nif operon has facilitated niche diversification of the globally distributed Ca. Thiodiazotropha endolucinida species clade. It highlights the importance of nitrogen availability in driving the ecological diversification of chemosynthetic symbiont species and the role that bacterial symbionts may play in the adaptation of marine organisms to changing environmental conditions.


Assuntos
Bivalves , Transferência Genética Horizontal , Fixação de Nitrogênio , Nitrogênio , Filogenia , Simbiose , Simbiose/genética , Animais , Fixação de Nitrogênio/genética , Nitrogênio/metabolismo , Bivalves/microbiologia , Bivalves/genética , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Adaptação Fisiológica/genética , Genoma Bacteriano , Região do Caribe , Panamá
3.
PLoS Biol ; 19(8): e3001322, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34411089

RESUMO

Marine multicellular organisms host a diverse collection of bacteria, archaea, microbial eukaryotes, and viruses that form their microbiome. Such host-associated microbes can significantly influence the host's physiological capacities; however, the identity and functional role(s) of key members of the microbiome ("core microbiome") in most marine hosts coexisting in natural settings remain obscure. Also unclear is how dynamic interactions between hosts and the immense standing pool of microbial genetic variation will affect marine ecosystems' capacity to adjust to environmental changes. Here, we argue that significantly advancing our understanding of how host-associated microbes shape marine hosts' plastic and adaptive responses to environmental change requires (i) recognizing that individual host-microbe systems do not exist in an ecological or evolutionary vacuum and (ii) expanding the field toward long-term, multidisciplinary research on entire communities of hosts and microbes. Natural experiments, such as time-calibrated geological events associated with well-characterized environmental gradients, provide unique ecological and evolutionary contexts to address this challenge. We focus here particularly on mutualistic interactions between hosts and microbes, but note that many of the same lessons and approaches would apply to other types of interactions.


Assuntos
Aclimatação , Organismos Aquáticos/microbiologia , Evolução Biológica , Ecologia , Microbiota , Animais , Ecossistema , Humanos , Simbiose
4.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34272286

RESUMO

In the ocean, most hosts acquire their symbionts from the environment. Due to the immense spatial scales involved, our understanding of the biogeography of hosts and symbionts in marine systems is patchy, although this knowledge is essential for understanding fundamental aspects of symbiosis such as host-symbiont specificity and evolution. Lucinidae is the most species-rich and widely distributed family of marine bivalves hosting autotrophic bacterial endosymbionts. Previous molecular surveys identified location-specific symbiont types that "promiscuously" form associations with multiple divergent cooccurring host species. This flexibility of host-microbe pairings is thought to underpin their global success, as it allows hosts to form associations with locally adapted symbionts. We used metagenomics to investigate the biodiversity, functional variability, and genetic exchange among the endosymbionts of 12 lucinid host species from across the globe. We report a cosmopolitan symbiont species, Candidatus Thiodiazotropha taylori, associated with multiple lucinid host species. Ca. T. taylori has achieved more success at dispersal and establishing symbioses with lucinids than any other symbiont described thus far. This discovery challenges our understanding of symbiont dispersal and location-specific colonization and suggests both symbiont and host flexibility underpin the ecological and evolutionary success of the lucinid symbiosis.


Assuntos
Bivalves/microbiologia , Gammaproteobacteria/classificação , Gammaproteobacteria/fisiologia , Simbiose , Animais , Processos Autotróficos , Biodiversidade , Evolução Biológica , Bivalves/classificação , Bivalves/fisiologia , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Especificidade de Hospedeiro , Filogenia , Filogeografia
5.
PLoS Biol ; 17(11): e3000533, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31710600

RESUMO

The significance of symbioses between eukaryotic hosts and microbes extends from the organismal to the ecosystem level and underpins the health of Earth's most threatened marine ecosystems. Despite rapid growth in research on host-associated microbes, from individual microbial symbionts to host-associated consortia of significantly relevant taxa, little is known about their interactions with the vast majority of marine host species. We outline research priorities to strengthen our current knowledge of host-microbiome interactions and how they shape marine ecosystems. We argue that such advances in research will help predict responses of species, communities, and ecosystems to stressors driven by human activity and inform future management strategies.


Assuntos
Organismos Aquáticos/microbiologia , Microbiota/fisiologia , Simbiose/fisiologia , Animais , Bactérias/classificação , Ecossistema , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos
6.
Appl Environ Microbiol ; 87(12): e0279520, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33837008

RESUMO

Seagrasses are marine flowering plants that provide critical ecosystem services in coastal environments worldwide. Marine fungi are often overlooked in microbiome and seagrass studies, despite terrestrial fungi having critical functional roles as decomposers, pathogens, or endophytes in global ecosystems. Here, we characterize the distribution of fungi associated with the seagrass Zostera marina, using leaves, roots, and rhizosphere sediment from 16 locations across its full biogeographic range. Using high-throughput sequencing of the ribosomal internal transcribed spacer (ITS) region and 18S rRNA gene, we first measured fungal community composition and diversity. We then tested hypotheses of neutral community assembly theory and the degree to which deviations suggested that amplicon sequence variants (ASVs) were plant selected or dispersal limited. Finally, we identified a core mycobiome and investigated the global distribution of differentially abundant ASVs. We found that the fungal community is significantly different between sites and that the leaf mycobiome follows a weak but significant pattern of distance decay in the Pacific Ocean. Generally, there was evidence for both deterministic and stochastic factors contributing to community assembly of the mycobiome, with most taxa assembling through stochastic processes. The Z. marina core leaf and root mycobiomes were dominated by unclassified Sordariomycetes spp., unclassified Chytridiomycota lineages (including Lobulomycetaceae spp.), unclassified Capnodiales spp., and Saccharomyces sp. It is clear from the many unclassified fungal ASVs and fungal functional guilds that knowledge of marine fungi is still rudimentary. Further studies characterizing seagrass-associated fungi are needed to understand the roles of these microorganisms generally and when associated with seagrasses. IMPORTANCE Fungi have important functional roles when associated with land plants, yet very little is known about the roles of fungi associated with marine plants, like seagrasses. In this study, we report the results of a global effort to characterize the fungi associated with the seagrass Zostera marina across its full biogeographic range. Although we defined a putative global core fungal community, it is apparent from the many fungal sequences and predicted functional guilds that had no matches to existing databases that general knowledge of seagrass-associated fungi and marine fungi is lacking. This work serves as an important foundational step toward future work investigating the functional ramifications of fungi in the marine ecosystem.


Assuntos
Micobioma , Zosteraceae/microbiologia , Fungos/classificação , Geografia , Sedimentos Geológicos/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Teóricos , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia
7.
PLoS Biol ; 16(8): e2006352, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30086128

RESUMO

Plants are associated with a complex microbiota that contributes to nutrient acquisition, plant growth, and plant defense. Nitrogen-fixing microbial associations are efficient and well characterized in legumes but are limited in cereals, including maize. We studied an indigenous landrace of maize grown in nitrogen-depleted soils in the Sierra Mixe region of Oaxaca, Mexico. This landrace is characterized by the extensive development of aerial roots that secrete a carbohydrate-rich mucilage. Analysis of the mucilage microbiota indicated that it was enriched in taxa for which many known species are diazotrophic, was enriched for homologs of genes encoding nitrogenase subunits, and harbored active nitrogenase activity as assessed by acetylene reduction and 15N2 incorporation assays. Field experiments in Sierra Mixe using 15N natural abundance or 15N-enrichment assessments over 5 years indicated that atmospheric nitrogen fixation contributed 29%-82% of the nitrogen nutrition of Sierra Mixe maize.


Assuntos
Microbiota/genética , Fixação de Nitrogênio/fisiologia , Nitrogênio/metabolismo , Zea mays/metabolismo , México , Microbiota/fisiologia , Filogenia , Desenvolvimento Vegetal , Mucilagem Vegetal/metabolismo , Raízes de Plantas/metabolismo , Polissacarídeos/metabolismo , Solo , Microbiologia do Solo
8.
Artigo em Inglês | MEDLINE | ID: mdl-33439117

RESUMO

Here, we describe three endosymbiotic bacterial strains isolated from the gills of the shipworm, Bankia setacea (Teredinidae: Bivalvia). These strains, designated as Bs08T, Bs12T and Bsc2T, are Gram-stain-negative, microaerobic, gammaproteobacteria that grow on cellulose and a variety of substrates derived from lignocellulose. Phenotypic characterization, phylogeny based on 16S rRNA gene and whole genome sequence data, amino acid identity and percentage of conserved proteins analyses, show that these strains are novel and may be assigned to the genus Teredinibacter. The three strains may be differentiated and distinguished from other previously described Teredinibacter species based on a combination of four characteristics: colony colour (Bs12T, purple; others beige to brown), marine salt requirement (Bs12T, Bsc2T and Teredinibacter turnerae strains), the capacity for nitrogen fixation (Bs08T and T. turnerae strains) and the ability to respire nitrate (Bs08T). Based on these findings, we propose the names Teredinibacter haidensis sp. nov. (type strain Bs08T=ATCC TSD-121T=KCTC 62964T), Teredinibacter purpureus sp. nov. (type strain Bs12T=ATCC TSD-122T=KCTC 62965T) and Teredinibacter franksiae sp. nov. (type strain Bsc2T=ATCC TSD-123T=KCTC 62966T).


Assuntos
Bivalves/microbiologia , Gammaproteobacteria/classificação , Brânquias/microbiologia , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Gammaproteobacteria/isolamento & purificação , Fixação de Nitrogênio , Oceano Pacífico , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Washington , Madeira
9.
PLoS Biol ; 15(4): e2001984, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28453514

RESUMO

The "gamification" of science has gained a lot of traction in recent years, and games that convey scientific concepts or themes are increasingly popular. While a number of existing games touch on microbiology, very few consider the beneficial (as opposed to the detrimental) aspects of microbes. We designed a board game called "Gut Check: The Microbiome Game" to fill this gap. The game is meant to be both educational as well as challenging and fun. Here we discuss the development of the game, some of the logistics of game development in this context, and offer suggestions for others thinking of similar projects.


Assuntos
Tecnologia Educacional , Teoria dos Jogos , Jogos Recreativos , Gastroenterologia/educação , Microbioma Gastrointestinal , Microbiologia/educação , Tecnologia Educacional/tendências , Gastroenterologia/tendências , Humanos , Microbiologia/tendências , Microbiota , Ensino , Recursos Humanos
10.
PLoS Biol ; 15(3): e2001793, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28350798

RESUMO

Feeding a growing world population amidst climate change requires optimizing the reliability, resource use, and environmental impacts of food production. One way to assist in achieving these goals is to integrate beneficial plant microbiomes-i.e., those enhancing plant growth, nutrient use efficiency, abiotic stress tolerance, and disease resistance-into agricultural production. This integration will require a large-scale effort among academic researchers, industry researchers, and farmers to understand and manage plant-microbiome interactions in the context of modern agricultural systems. Here, we identify priorities for research in this area: (1) develop model host-microbiome systems for crop plants and non-crop plants with associated microbial culture collections and reference genomes, (2) define core microbiomes and metagenomes in these model systems, (3) elucidate the rules of synthetic, functionally programmable microbiome assembly, (4) determine functional mechanisms of plant-microbiome interactions, and (5) characterize and refine plant genotype-by-environment-by-microbiome-by-management interactions. Meeting these goals should accelerate our ability to design and implement effective agricultural microbiome manipulations and management strategies, which, in turn, will pay dividends for both the consumers and producers of the world food supply.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais/tendências , Microbiota , Plantas/microbiologia , Pesquisa , Abastecimento de Alimentos , Projetos de Pesquisa
11.
Int J Syst Evol Microbiol ; 70(4): 2388-2394, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32100688

RESUMO

A cellulolytic, aerobic, gammaproteobacterium, designated strain Bs02T, was isolated from the gills of a marine wood-boring mollusc, Bankia setacea (Bivalvia: Teredinidae). The cells are Gram-stain-negative, slightly curved motile rods (2-5×0.4-0.6 µm) that bear a single polar flagellum and are capable of heterotrophic growth in a simple mineral medium supplemented with cellulose as a sole source of carbon and energy. Cellulose, carboxymethylcellulose, xylan, cellobiose and a variety of sugars also support growth. Strain Bs02T requires combined nitrogen for growth. Temperature, pH and salinity optima (range) for growth were 20 °C (range, 10-30 °C), 8.0 (pH 6.5-8.5) and 0.5 M NaCl (range, 0.0-0.8 M), respectively when grown on 0.5 % (w/v) galactose. Strain Bs02T does not require magnesium and calcium ion concentrations reflecting the proportions found in seawater. The genome size is approximately 4.03 Mbp and the DNA G+C content of the genome is 47.8 mol%. Phylogenetic analyses based on 16S rRNA gene sequences, and on conserved protein-coding sequences, show that strain Bs02T forms a well-supported clade with Teredinibacter turnerae. Average nucleotide identity and percentage of conserved proteins differentiate strain Bs02T from Teredinibacter turnerae at threshold values exceeding those proposed to distinguish bacterial species but not genera. These results indicate that strain Bs02T represents a novel species in the previously monotypic genus Teredinibacter for which the name Teredinibacter waterburyi sp. nov. is proposed. The strain has been deposited under accession numbers ATCC TSD-120T and KCTC 62963T.


Assuntos
Bivalves/microbiologia , Gammaproteobacteria/classificação , Brânquias/microbiologia , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Gammaproteobacteria/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Madeira
12.
Emerg Infect Dis ; 25(11): 2013-2020, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31625848

RESUMO

During the water crisis in Flint, Michigan, USA (2014-2015), 2 outbreaks of Legionnaires' disease occurred in Genesee County, Michigan. We compared whole-genome sequences of 10 clinical Legionella pneumophila isolates submitted to a laboratory in Genesee County during the second outbreak with 103 water isolates collected the following year. We documented a genetically diverse range of L. pneumophila strains across clinical and water isolates. Isolates belonging to 1 clade (3 clinical isolates, 3 water isolates from a Flint hospital, 1 water isolate from a Flint residence, and the reference Paris strain) had a high degree of similarity (2-1,062 single-nucleotide polymorphisms), all L. pneumophila sequence type 1, serogroup 1. Serogroup 6 isolates belonging to sequence type 2518 were widespread in Flint hospital water samples but bore no resemblance to available clinical isolates. L. pneumophila strains in Flint tap water after the outbreaks were diverse and similar to some disease-causing strains.


Assuntos
Água Potável/microbiologia , Genoma Bacteriano , Legionella pneumophila/genética , Doença dos Legionários/epidemiologia , Doença dos Legionários/microbiologia , Microbiologia da Água , Sequenciamento Completo do Genoma , Humanos , Legionella pneumophila/classificação , Legionella pneumophila/isolamento & purificação , Michigan/epidemiologia , Filogenia , Polimorfismo de Nucleotídeo Único
13.
Nature ; 499(7459): 431-7, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23851394

RESUMO

Genome sequencing enhances our understanding of the biological world by providing blueprints for the evolutionary and functional diversity that shapes the biosphere. However, microbial genomes that are currently available are of limited phylogenetic breadth, owing to our historical inability to cultivate most microorganisms in the laboratory. We apply single-cell genomics to target and sequence 201 uncultivated archaeal and bacterial cells from nine diverse habitats belonging to 29 major mostly uncharted branches of the tree of life, so-called 'microbial dark matter'. With this additional genomic information, we are able to resolve many intra- and inter-phylum-level relationships and to propose two new superphyla. We uncover unexpected metabolic features that extend our understanding of biology and challenge established boundaries between the three domains of life. These include a novel amino acid use for the opal stop codon, an archaeal-type purine synthesis in Bacteria and complete sigma factors in Archaea similar to those in Bacteria. The single-cell genomes also served to phylogenetically anchor up to 20% of metagenomic reads in some habitats, facilitating organism-level interpretation of ecosystem function. This study greatly expands the genomic representation of the tree of life and provides a systematic step towards a better understanding of biological evolution on our planet.


Assuntos
Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Metagenômica , Filogenia , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Ecossistema , Genoma Arqueal/genética , Genoma Bacteriano/genética , Metagenoma/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , Análise de Célula Única
15.
Proc Natl Acad Sci U S A ; 112(8): E911-20, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25605935

RESUMO

Plants depend upon beneficial interactions between roots and microbes for nutrient availability, growth promotion, and disease suppression. High-throughput sequencing approaches have provided recent insights into root microbiomes, but our current understanding is still limited relative to animal microbiomes. Here we present a detailed characterization of the root-associated microbiomes of the crop plant rice by deep sequencing, using plants grown under controlled conditions as well as field cultivation at multiple sites. The spatial resolution of the study distinguished three root-associated compartments, the endosphere (root interior), rhizoplane (root surface), and rhizosphere (soil close to the root surface), each of which was found to harbor a distinct microbiome. Under controlled greenhouse conditions, microbiome composition varied with soil source and genotype. In field conditions, geographical location and cultivation practice, namely organic vs. conventional, were factors contributing to microbiome variation. Rice cultivation is a major source of global methane emissions, and methanogenic archaea could be detected in all spatial compartments of field-grown rice. The depth and scale of this study were used to build coabundance networks that revealed potential microbial consortia, some of which were involved in methane cycling. Dynamic changes observed during microbiome acquisition, as well as steady-state compositions of spatial compartments, support a multistep model for root microbiome assembly from soil wherein the rhizoplane plays a selective gating role. Similarities in the distribution of phyla in the root microbiomes of rice and other plants suggest that conclusions derived from this study might be generally applicable to land plants.


Assuntos
Variação Genética , Microbiota/genética , Oryza/genética , Oryza/microbiologia , Raízes de Plantas/microbiologia , Bactérias/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Genótipo , Geografia , Metano/análise , Oryza/crescimento & desenvolvimento , Rizosfera , Solo , Microbiologia do Solo , Fatores de Tempo
16.
Proc Natl Acad Sci U S A ; 112(21): E2813-9, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25964331

RESUMO

Vibrio species are both ubiquitous and abundant in marine coastal waters, estuaries, ocean sediment, and aquaculture settings worldwide. We report here the isolation, characterization, and genome sequence of a novel Vibrio species, Vibrio antiquarius, isolated from a mesophilic bacterial community associated with hydrothermal vents located along the East Pacific Rise, near the southwest coast of Mexico. Genomic and phenotypic analysis revealed V. antiquarius is closely related to pathogenic Vibrio species, namely Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio harveyi, and Vibrio vulnificus, but sufficiently divergent to warrant a separate species status. The V. antiquarius genome encodes genes and operons with ecological functions relevant to the environment conditions of the deep sea and also harbors factors known to be involved in human disease caused by freshwater, coastal, and brackish water vibrios. The presence of virulence factors in this deep-sea Vibrio species suggests a far more fundamental role of these factors for their bacterial host. Comparative genomics revealed a variety of genomic events that may have provided an important driving force in V. antiquarius evolution, facilitating response to environmental conditions of the deep sea.


Assuntos
Fontes Hidrotermais/microbiologia , Vibrio/isolamento & purificação , Vibrio/patogenicidade , Evolução Molecular , Genoma Bacteriano , Humanos , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Especificidade da Espécie , Vibrio/genética , Virulência/genética
17.
Appl Environ Microbiol ; 83(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28411219

RESUMO

Plant-associated microorganisms are essential for their hosts' survival and performance. Yet, most plant microbiome studies to date have focused on terrestrial species sampled across relatively small spatial scales. Here, we report the results of a global-scale analysis of microbial communities associated with leaf and root surfaces of the marine eelgrass Zostera marina throughout its range in the Northern Hemisphere. By contrasting host microbiomes with those of surrounding seawater and sediment, we uncovered the structure, composition, and variability of microbial communities associated with eelgrass. We also investigated hypotheses about the assembly of the eelgrass microbiome using a metabolic modeling approach. Our results reveal leaf communities displaying high variability and spatial turnover that mirror their adjacent coastal seawater microbiomes. By contrast, roots showed relatively low compositional turnover and were distinct from surrounding sediment communities, a result driven by the enrichment of predicted sulfur-oxidizing bacterial taxa on root surfaces. Predictions from metabolic modeling of enriched taxa were consistent with a habitat-filtering community assembly mechanism whereby similarity in resource use drives taxonomic cooccurrence patterns on belowground, but not aboveground, host tissues. Our work provides evidence for a core eelgrass root microbiome with putative functional roles and highlights potentially disparate processes influencing microbial community assembly on different plant compartments.IMPORTANCE Plants depend critically on their associated microbiome, yet the structure of microbial communities found on marine plants remains poorly understood in comparison to that for terrestrial species. Seagrasses are the only flowering plants that live entirely in marine environments. The return of terrestrial seagrass ancestors to oceans is among the most extreme habitat shifts documented in plants, making them an ideal testbed for the study of microbial symbioses with plants that experience relatively harsh abiotic conditions. In this study, we report the results of a global sampling effort to extensively characterize the structure of microbial communities associated with the widespread seagrass species Zostera marina, or eelgrass, across its geographic range. Our results reveal major differences in the structure and composition of above- versus belowground microbial communities on eelgrass surfaces, as well as their relationships with the environment and host.


Assuntos
Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Microbiota , Água do Mar/microbiologia , Zosteraceae/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Geografia , Filogenia , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia
18.
PLoS Biol ; 12(8): e1001920, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25093819

RESUMO

Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000). This effort will provide an unprecedented level of coverage of our planet's genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment.


Assuntos
Genoma Arqueal/genética , Genoma Bacteriano/genética , Genômica , Análise de Sequência de DNA , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Bases de Dados Genéticas , Filogenia
19.
PLoS Genet ; 10(11): e1004784, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25393412

RESUMO

Organisms across the tree of life use a variety of mechanisms to respond to stress-inducing fluctuations in osmotic conditions. Cellular response mechanisms and phenotypes associated with osmoadaptation also play important roles in bacterial virulence, human health, agricultural production and many other biological systems. To improve understanding of osmoadaptive strategies, we have generated 59 high-quality draft genomes for the haloarchaea (a euryarchaeal clade whose members thrive in hypersaline environments and routinely experience drastic changes in environmental salinity) and analyzed these new genomes in combination with those from 21 previously sequenced haloarchaeal isolates. We propose a generalized model for haloarchaeal management of cytoplasmic osmolarity in response to osmotic shifts, where potassium accumulation and sodium expulsion during osmotic upshock are accomplished via secondary transport using the proton gradient as an energy source, and potassium loss during downshock is via a combination of secondary transport and non-specific ion loss through mechanosensitive channels. We also propose new mechanisms for magnesium and chloride accumulation. We describe the expansion and differentiation of haloarchaeal general transcription factor families, including two novel expansions of the TATA-binding protein family, and discuss their potential for enabling rapid adaptation to environmental fluxes. We challenge a recent high-profile proposal regarding the evolutionary origins of the haloarchaea by showing that inclusion of additional genomes significantly reduces support for a proposed large-scale horizontal gene transfer into the ancestral haloarchaeon from the bacterial domain. The combination of broad (17 genera) and deep (≥5 species in four genera) sampling of a phenotypically unified clade has enabled us to uncover both highly conserved and specialized features of osmoadaptation. Finally, we demonstrate the broad utility of such datasets, for metagenomics, improvements to automated gene annotation and investigations of evolutionary processes.


Assuntos
Adaptação Fisiológica/genética , Archaea/genética , Metagenômica , Proteína de Ligação a TATA-Box/genética , Sequência de Bases , Evolução Molecular , Genoma Arqueal , Humanos , Anotação de Sequência Molecular , Concentração Osmolar , Filogenia , Salinidade
20.
Appl Environ Microbiol ; 82(2): 620-30, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26567300

RESUMO

Lake Fryxell is a perennially ice-covered lake in the McMurdo Dry Valleys, Antarctica, with a sharp oxycline in a water column that is density stabilized by a gradient in salt concentration. Dissolved oxygen falls from 20 mg liter(-1) to undetectable over one vertical meter from 8.9- to 9.9-m depth. We provide the first description of the benthic mat community that falls within this oxygen gradient on the sloping floor of the lake, using a combination of micro- and macroscopic morphological descriptions, pigment analysis, and 16S rRNA gene bacterial community analysis. Our work focused on three macroscopic mat morphologies that were associated with different parts of the oxygen gradient: (i) "cuspate pinnacles" in the upper hyperoxic zone, which displayed complex topography and were dominated by phycoerythrin-rich cyanobacteria attributable to the genus Leptolyngbya and a diverse but sparse assemblage of pennate diatoms; (ii) a less topographically complex "ridge-pit" mat located immediately above the oxic-anoxic transition containing Leptolyngbya and an increasing abundance of diatoms; and (iii) flat prostrate mats in the upper anoxic zone, dominated by a green cyanobacterium phylogenetically identified as Phormidium pseudopriestleyi and a single diatom, Diadesmis contenta. Zonation of bacteria was by lake depth and by depth into individual mats. Deeper mats had higher abundances of bacteriochlorophylls and anoxygenic phototrophs, including Chlorobi and Chloroflexi. This suggests that microbial communities form assemblages specific to niche-like locations. Mat morphologies, underpinned by cyanobacterial and diatom composition, are the result of local habitat conditions likely defined by irradiance and oxygen and sulfide concentrations.


Assuntos
Bactérias/isolamento & purificação , Camada de Gelo/microbiologia , Lagos/microbiologia , Oxigênio/análise , Regiões Antárticas , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Camada de Gelo/química , Lagos/análise , Dados de Sequência Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa