Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(30): 16305-16309, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37471267

RESUMO

Ab initio molecular dynamics simulations are used to explore tetrahydrofuran (THF) solutions containing pure LiCl and LiCl with CH3MgCl, as model constituents of the turbo Grignard reagent. LiCl aggregates as Li4Cl4, which preferentially assumes compact cubane-like conformations. In particular, an open-edge pseudotetrahedral frame is promoted by solvent-assisted Li-Cl bond cleavage. Among the Grignard species involved in the Schlenk equilibrium, LiCl prefers to coordinate MgCl2 through µ2-Cl bridges. Using a 1:1 Li:Mg ratio, the plastic tetranuclear LiCl cluster decomposes to a highly solvated mixed LiCl·MgCl2 aggregate with prevalent Li-(µ2-Cl)2-Mg rings and linear LiCl entities. The MgCl2-assisted disaggregation of Li4Cl4 occurs through transient structures analogous to those detected for pure LiCl in THF, also corresponding to moieties observed in the solid state. This study identifies a synergistic role of LiCl for the determination of the compounds present in turbo Grignard solutions. LiCl shifts the Schlenk equilibrium promoting a higher concentration of dialkylmagnesium, while decomposing into smaller, more soluble, mixed Li:Mg:Cl clusters.

2.
Inorg Chem ; 62(12): 4835-4846, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36920236

RESUMO

The halogen bond (XB) is a highly directional class of noncovalent interactions widely explored by experimental and computational studies. However, the NMR signature of the XB has attracted limited attention. The prediction and analysis of the solid-state NMR (SSNMR) chemical shift tensor provide useful strategies to better understand XB interactions. In this work, we employ a computational protocol for modeling and analyzing the 19F SSNMR chemical shifts previously measured in a family of square-planar trans NiII-L2-iodoaryl-fluoride (L = PEt3) complexes capable of forming self-complementary networks held by a NiF···I(C) halogen bond [Thangavadivale, V.; Chem. Sci. 2018, 9, 3767-3781]. To understand how the 19F NMR resonances of the nickel-bonded fluoride are affected by the XB, we investigate the origin of the shielding in trans-[NiF(2,3,5,6-C6F4I)(PEt3)2], trans-[NiF(2,3,4,5-C6F4I)(PEt3)2], and trans-[NiF(C6F5)(PEt3)2] in the solid state, where a XB is present in the two former systems but not in the last. We perform the 19F NMR chemical shift calculations both in periodic and molecular models. The results show that the crystal packing has little influence on the NMR signatures of the XB, and the NMR can be modeled successfully with a pair of molecules interacting via the XB. Thus, the observed difference in chemical shift between solid-state and solution NMR can be essentially attributed to the XB interaction. The very high shielding of the fluoride and its driving contributor, the most shielded component of the chemical shift tensor, are well reproduced at the 2c-ZORA level. Analysis of the factors controlling the shielding shows how the highest occupied Ni/F orbitals shield the fluoride in the directions perpendicular to the Ni-F bond and specifically perpendicular to the coordination plane. This shielding arises from the magnetic coupling of the Ni(3d)/F(2p lone pair) orbitals with the vacant σNi-F* orbital, thereby rationalizing the very highly upfield (shielded) resonance of the component (δ33) along this direction. We show that these features are characteristic of square-planar nickel-fluoride complexes. The deshielding of the fluoride in the halogen-bonded systems is attributed to an increase in the energy gap between the occupied and vacant orbitals that are mostly responsible for the paramagnetic terms, notably along the most shielded direction.

3.
Proc Natl Acad Sci U S A ; 115(26): E5867-E5876, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891699

RESUMO

d0 metal-alkyl complexes (M = Ti, Zr, and Hf) show specific activity and selectivity in olefin polymerization and oligomerization depending on their ligand set and charge. Here, we show by a combined experimental and computational study that the 13C NMR chemical shift tensors of the α-carbon of metal alkyls that undergo olefin insertion signal the presence of partial alkylidene character in the metal-carbon bond, which facilitates this reaction. The alkylidene character is traced back to the π-donating interaction of a filled orbital on the alkyl group with an empty low-lying metal d-orbital of appropriate symmetry. This molecular orbital picture establishes a connection between olefin insertion into a metal-alkyl bond and olefin metathesis and a close link between the Cossee-Arlmann and Green-Rooney polymerization mechanisms. The 13C NMR chemical shifts, the α-H agostic interaction, and the low activation barrier of ethylene insertion are, therefore, the results of the same orbital interactions, thus establishing chemical shift tensors as a descriptor for olefin insertion.

4.
J Am Chem Soc ; 142(6): 2984-2994, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31951398

RESUMO

More than 100 years since its discovery, the mechanism of the Grignard reaction remains unresolved. Ambiguities arise from the concomitant presence of multiple organomagnesium species and the competing mechanisms involving either nucleophilic addition or the formation of radical intermediates. To shed light on this topic, quantum-chemical calculations and ab initio molecular dynamics simulations are used to study the reaction of CH3MgCl in tetrahydrofuran with acetaldehyde and fluorenone as prototypical reagents. All organomagnesium species coexisting in solution due to the Schlenk equilibrium are found to be competent reagents for the nucleophilic pathway. The range of activation energies displayed by all of these compounds is relatively small. The most reactive species are a dinuclear Mg complex in which the substrate and the nucleophile initially bind to different Mg centers and the mononuclear dimethyl magnesium. The radical reaction, which requires the homolytic cleavage of the Mg-CH3 bond, cannot occur unless a substrate with a low-lying π*(CO) orbital coordinates the Mg center. This rationalizes why a radical mechanism is detected only in the presence of substrates with a low reduction potential. This feature, in turn, does not necessarily favor the nucleophilic addition, as shown for the reaction with fluorenone. The solvent needs to be considered as a reactant for both the nucleophilic and the radical reactions, and its dynamics is essential for representing the energy profile. The similar reactivity of several species in fast equilibrium implies that the reaction does not occur via a single process but by an ensemble of parallel reactions.

5.
Acc Chem Res ; 52(8): 2278-2289, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31339693

RESUMO

Metal-bonded carbon atoms in metal-alkyl, metal-carbene/alkylidene, and metal-carbyne/alkylidyne species often show significantly more deshielded isotropic chemical shifts than their organic counterparts (alkanes, alkenes, and alkynes). While isotropic chemical shift is universally used to characterize a chemical compound in solution, it is an average value of the three principal components of the chemical shift tensor (δ11 > δ22 > δ33). The tensor components, which are accessible by solid-state NMR spectroscopy, can provide detailed information about the electronic structure (frontier molecular orbitals) at the observed nuclei. This information can be accessed in detail by quantum chemical calculations, most notably by an analysis of the paramagnetic contribution to the NMR shielding tensor. The paramagnetic term mainly results from the coupling of occupied and empty molecular orbitals close in energy-the frontier molecular orbitals-under the effect of the external magnetic field (B0). In organometallic compounds, a large deshielding of the isotropic carbon-13 chemical shift of the metal-bonded carbon atom is commonly related to the coupling between the occupied σM-C orbital and low-lying vacant orbitals of πM═C* character. The deshielding at the α-carbon hence probes the extent of σM-C and πM═C* interactions. This molecular orbital view readily explains the strong deshielding and large anisotropy (evidenced by the span Ω = δ11 - δ33) observed in metal alkylidenes and alkylidynes (200 < δiso < 400 ppm). Fischer carbenes are generally more deshielded than Schrock or Grubbs alkylidenes due to their low-lying πM═C* orbital. Chemical shift hence shows their higher electrophilic character, connecting NMR spectroscopy to reactivity patterns. Similarly, the α-carbon of metal-alkyls display deshielded chemical shifts in specific coordination environments. This deshielding, which is often prominently pronounced for cationic species, indicates the presence of partial π-bond character in the metal-carbon bond, making these bonds topologically equivalent to alkylidene π-bonds. The π-character in metal-alkyl bonds favors (i) α-H abstraction processes in metal bis-alkyl compounds yielding metal alkylidenes, (ii) [2 + 2]-retrocyclization of metallacyclobutanes that participate in olefin metathesis, (iii) olefin insertion in cationic metal alkyls thus explaining polymerization activity trends and the importance of α-H agostic interactions, and (iv) C-H bond activation on metal-alkyls via σ-bond metathesis. The presence of π-character in the metal-carbon bonds involved in these processes rationalizes the parallel reactivity patterns of metal-alkyls toward olefin insertion and σ-bond metathesis and the fact that σ-bond metathesis, olefin insertion, and olefin metathesis are commonly observed with metal atoms in the same ligand field. Because of the similarities in the frontier molecular orbitals involved in these processes, these reactions can be viewed as isolobal. This explains why certain fragments, such as bent metallocenes (d0 Cp2M) or T-shaped L3M, are ubiquitous in these reactions.

6.
Inorg Chem ; 59(23): 17038-17048, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33156986

RESUMO

The NMR chemical shift has been the most versatile marker of chemical structures, by reflecting global and local electronic structures, and is very sensitive to any change within the chemical species. In this work, Ru(II) complexes with the same five ligands and a variable sixth ligand L (none, H2O, H2S, CH3SH, H2, N2, N2O, NO+, C═CHPh, and CO) are studied by using as the NMR reporter the phosphorus PA of a coordinated bidentate PA-N ligand (PA-N = o-diphenylphosphino-N,N'-dimethylaniline). The chemical shift of PA in RuCl2(PA-N)(PR3)(L) (R = phenyl, p-tolyl, or p-FC6H4) was shown to increase as the Ru-PA bond distance decreases, an observation that was not rationalized. This work, using density functional theory (DFT) calculations, reproduces reasonably well the observed 31P chemical shifts for these complexes and the correlation between the shifts and the Ru-PA bond distance as L varies. An interpretation of this correlation is proposed by using a natural chemical shift (NCS) analysis based on the natural bonding orbital (NBO) method. This analysis of the principal components of the chemical shift tensors shows how the σ-donating properties of L have a particularly high influence on the phosphine chemical shifts.

7.
J Am Chem Soc ; 141(1): 648-656, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525557

RESUMO

C-H bond activation via σ-bond metathesis is typically observed with transition-metal alkyl compounds in d0 or d0fn electron configurations, e.g., biscyclopentadienyl metal alkyls. Related C-H activation processes are also observed for transition-metal alkyls with higher d-electron counts, such as W(II), Fe(II), or Ir(III). A σ-bond metathesis mechanism has been proposed in all cases with a preference for an oxidative addition-reductive elimination pathway for Ir(III). Herein we show that, regardless of the exact mechanism, C-H activation with all of these compounds is associated with π-character of the M-C bond, according to a detailed analysis of the 13C NMR chemical shift tensor of the α-carbon. π-Character is also a requirement for olefin insertion, indicating its similarity to σ-bond metathesis. This observation explains the H2 response observed in d0 olefin polymerization catalysts and underlines that σ-bond metathesis, olefin insertion, and olefin metathesis are in fact isolobal reactions.

8.
Faraday Discuss ; 220(0): 489-495, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31650992

RESUMO

The Faraday Discussions meeting on Mechanistic Processes in Organometallic Chemistry was a brilliant occasion to assemble chemists from diverse sub-disciplines to discuss the progress and limitations of the study of reaction mechanisms using organometallic systems for stoichiometric or catalytic reactions. It was also highly meaningful that this Discussion was held at the University of York, where the tradition of analysing and understanding chemical events is very strong (as shown in the presentation by Ian Fairlamb). From the presentation of experimental and theoretical results, the feeling is that of a half filled/half empty glass: immense progress has been made and more physical and theoretical methods are now available to study these systems, but the path in front of us is still very long and full of pitfalls. To quote Todd Marder: "It is still worthwhile and exciting to get out of bed in the morning to go to the laboratory and explore more deeply the complexity of chemical reactions."

9.
Chem Rev ; 117(13): 8710-8753, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28653537

RESUMO

Partially fluorinated alkanes, arenes, and alkenes can be transformed by a variety of transition metal and lanthanide systems. Although the C-H bond is weaker than the C-F bond regardless of the hybridization of the carbon, the reaction of the C-F bond at the metal is usually more exothermic than the corresponding reaction of the C-H bonds. Both bonds are activated by the metal systems, but the preference for activating these bonds depends on the nature of the hydrocarbon and of the metal system, so that the reaction can be directed exclusively toward C-H or C-F bonds or yield a mixture of products. Additionally, the presence of fluorine differentiates between C-H bonds at different positions resulting in regioselective C-H bond activation; paradoxically, the strongest C-H bond reacts preferentially. The purpose of this review is to describe the field of reactions of partially fluorinated substrates with transition metal atoms, ions, and molecular complexes. The controlling physical properties (thermodynamics and kinetics) are described first, followed by a description of stoichiometric reactions, with the competition between the C-H and C-F activations as focus. A few representative catalytic systems are discussed. The review also highlights the benefit of combining experimental and theoretical studies.

14.
J Org Chem ; 83(7): 3497-3515, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29537856

RESUMO

Several approaches using organozirconocene species for the remote cleavage of strained three-membered ring carbocycles are described. ω-Ene polysubstituted cyclopropanes, alkylidenecyclopropanes, ω-ene spiro[2.2]pentanes, and ω-ene cyclopropyl methyl ethers were successfully transformed into stereodefined organometallic intermediates, allowing an easy access to highly stereoenriched acyclic scaffolds in good yields and, in most cases, excellent selectivities. DFT calculations and isotopic labeling experiments were performed to delineate the origin of the obtained chemo- and stereoselectivities, demonstrating the importance of microreversibility.

15.
J Am Chem Soc ; 139(48): 17597-17607, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29083916

RESUMO

Molybdenum-based molecular alkylidyne complexes of the type [MesC≡Mo{OC(CH3)3-x(CF3)x}3] (MoF0, x = 0; MoF3, x = 1; MoF6, x = 2; MoF9, x = 3; Mes = 2,4,6-trimethylphenyl) and their silica-supported analogues are prepared and characterized at the molecular level, in particular by solid-state NMR, and their alkyne metathesis catalytic activity is evaluated. The 13C NMR chemical shift of the alkylidyne carbon increases with increasing number of fluorine atoms on the alkoxide ligands for both molecular and supported catalysts but with more shielded values for the supported complexes. The activity of these catalysts increases in the order MoF0 < MoF3 < MoF6 before sharply decreasing for MoF9, with a similar effect for the supported systems (MoF0 ≈ MoF9 < MoF6 < MoF3). This is consistent with the different kinetic behavior (zeroth order in alkyne for MoF9 derivatives instead of first order for the others) and the isolation of stable metallacyclobutadiene intermediates of MoF9 for both molecular and supported species. Detailed solid-state NMR analysis of molecular and silica-supported metal alkylidyne catalysts coupled with DFT/ZORA calculations rationalize the NMR spectroscopic signatures and discernible activity trends at the frontier orbital level: (1) increasing the number of fluorine atoms lowers the energy of the π*(M≡C) orbital, explaining the more deshielded chemical shift values; it also leads to an increased electrophilicity and higher reactivity for catalysts up to MoF6, prior to a sharp decrease in reactivity for MoF9 due to the formation of stable metallacyclobutadiene intermediates; (2) the silica-supported catalysts are less active than their molecular analogues because they are less electrophilic and dynamic, as revealed by their 13C NMR chemical shift tensors.

16.
Acc Chem Res ; 49(5): 1070-8, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27152927

RESUMO

Computational chemistry has made a sustained contribution to the understanding of chemical reactions. In earlier times, half a century ago, the goal was to distinguish allowed from forbidden reactions (e.g., Woodward-Hoffmann rules), that is, reactions with low or high to very high activation barriers. A great achievement of computational chemistry was also to contribute to the determination of structures with the bonus of proposing a rationalization (e.g., anomeric effect, isolobal analogy, Gillespie valence shell pair electron repulsion rules and counter examples, Wade-Mingos rules for molecular clusters). With the development of new methods and the constant increase in computing power, computational chemists move to more challenging problems, close to the daily concerns of the experimental chemists, in determining the factors that make a reaction both efficient and selective: a key issue in organic synthesis. For this purpose, experimental chemists use advanced synthetic and analytical techniques to which computational chemists added other ways of determining reaction pathways. The transition states and intermediates contributing to the transformation of reactants into the desired and undesired products can now be determined, including their geometries, energies, charges, spin densities, spectroscopy properties, etc. Such studies remain challenging due to the large number of chemical species commonly present in the reactive media whose role may have to be determined. Calculating chemical systems as they are in the experiment is not always possible, bringing its own share of complexity through the large number of atoms and the associated large number of conformers to consider. Modeling the chemical species with smaller systems is an alternative that historically led to artifacts. Another important topic is the choice of the computational method. While DFT is widely used, the vast diversity of functionals available is both an opportunity and a challenge. Though chemical knowledge helps, the relevant computational method is best chosen in conjunction with the nature of the experimental systems and many studies have been concerned with this topic. We will not address this aspect but give references in the text. Usually, a computational study starts with the validation of the method by means of benchmark calculations vs accurate experimental data or state-of-the-art calculations. Finally, computational chemists can bring more than the sole determination of the reaction pathways through the analysis of the electronic structure. In our case, we have privileged the NBO analysis, which has the advantage of describing interactions on the basis of terms and concepts that are shared within the chemical community. In this Account, we have chosen to select representative reactions from our own work to highlight the diversity of situations than can be addressed nowadays. These include selective activation of C(sp(3))-H bonds, selective reactions with low energy barriers, involving closed shell or radical species, the role of noncovalent interactions, and the importance of considering side reactions.

17.
Angew Chem Int Ed Engl ; 56(34): 10127-10131, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28590040

RESUMO

Fischer and Schrock carbenes display highly deshielded carbon chemical shifts (>250 ppm), in particular Fischer carbenes (>300 ppm). Orbital analysis of the principal components of the chemical shift tensors determined by solid-state NMR spectroscopy and calculated by a 2-component DFT method shows specific patterns that act as fingerprints for each type of complex. The calculations highlight the role of the paramagnetic term in the shielding tensor especially in the two most deshielded components (σ11 and σ22 ). The paramagnetic term of σ11 is dominated by coupling σ(M=C) with π*(M=C) through the angular momentum operator perpendicular to the σ and π M=C bonds. The highly deshielded carbon of Fischer carbenes results from the particularly low-lying π*(M=C) associated with the CO ligand. A contribution of the coupling of π(M=C) with σ*(M=C) is found for Schrock and Ru-based carbenes, indicating similarities between them, despite their different electronic configurations (d0 vs. d6 ).

18.
J Am Chem Soc ; 138(7): 2261-72, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26787258

RESUMO

The nucleophilic carbon of d(0) Schrock alkylidene metathesis catalysts, [M] = CHR, display surprisingly low downfield chemical shift (δ(iso)) and large chemical shift anisotropy. State-of-the-art four-component relativistic calculations of the chemical shift tensors combined with a two-component analysis in terms of localized orbitals allow a molecular-level understanding of their orientations, the magnitude of their principal components (δ11 > δ22 > δ33) and associated δ(iso). This analysis reveals the dominating influence of the paramagnetic contribution yielding a highly deshielded alkylidene carbon. The largest paramagnetic contribution, which originates from the coupling of alkylidene σ(MC) and π*(MC) orbitals under the action of the magnetic field, is analogous to that resulting from coupling σ(CC) and π*(CC) in ethylene; thus, δ11 is in the MCH plane and is perpendicular to the MC internuclear direction. The higher value of carbon-13 δ(iso) in alkylidene complexes relative to ethylene is thus due to the smaller energy gap between σ(MC) and π*(MC) vs this between σ(CC) and π*(CC) in ethylene. This effect also explains why the highest value of δ(iso) is observed for Mo and the lowest for Ta, the values for W and Re being in between. In the presence of agostic interaction, the chemical shift tensor principal components orientation (δ22 or δ33 parallel or perpendicular to π(MX)) is influenced by the MCH angle because it determines the orientation of the alkylidene CHR fragment relative to the MC internuclear axis. The orbital analysis shows how the paramagnetic terms, understood with a localized bond model, determine the chemical shift tensor and thereby δ(iso).

19.
J Am Chem Soc ; 137(28): 9186-94, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26135519

RESUMO

Masked silylene complexes Cp*(IXy-H)(H)RuSiH2R (R = Mes (3) and Trip (4); IXy = 1,3-bis(2,6-dimethylphenyl)imidazol-2-ylidene; "IXy-H" is the deprotonated form of IXy) exhibit metallosilylene-like (LnM-Si-R) reactivity, as observed in reactions of nonenolizable ketones, enones, and tosyl azides, to give unprecedented silaoxiranyl, oxasilacyclopentenyl, and silaiminyl complexes, respectively. Notably, these silicon-containing complexes are derived from the primary silanes MesSiH3 and TripSiH3 via activation of all three Si-H bonds. DFT calculations suggest that the mechanism of formation for the silaoxiranyl complex Cp*(IXy)(H)2Ru-Si(OCPh2)Trip (6) involves coordination of benzophenone to a silylene silicon atom, followed by a single-electron transfer in which Si-bonded, non-innocent benzophenone accepts an electron from the reactive, electron-rich ruthenium center. Importantly, this electron transfer promotes an unusual 1,2-hydrogen migration to the resulting, more electron-deficient ruthenium center via a diradicaloid transition state.

20.
Inorg Chem ; 54(24): 11648-59, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26650850

RESUMO

Hydrazine reacts with silica-supported tantalum-hydrides [(≡SiO)2TaHx] (x = 1, 3), 1, under mild conditions (100 °C). The IR in situ monitoring of the reaction with N2H4 or (15)N2H4, and the solid-state MAS NMR spectra of the fully (15)N labeled compounds (CP (15)N, (1)H-(15)N HETCOR, (1)H-(1)H double-quantum, and (1)H-(1)H triple-quantum spectra) were used to identify stable intermediates and products. DFT calculations were used for determining the reaction pathway and calculating the (15)N and (1)H NMR chemical shifts. Combining the experimental and computational studies led to the following results. At room temperature, only hydrazine adducts, 1-N2H4, are formed. Upon heating at 100 °C, the hydrazine adducts are converted to several species among which [(≡SiO)2Ta(═NH)(NH2)], 2, [(≡SiO)2TaH(NH2)2], 3, and [(≡SiO)2TaH2(NH-NH2)], 4, were identified. The final product 2 is also formed in the reaction of N2 with the same silica-supported tantalum-hydride complexes, and the species identified as 3 and 4 had been previously suggested by DFT studies as intermediates on the reaction pathway for N-N cleavage in N2. The present computational studies (cluster models with M06 functional complemented by selected calculations with periodic calculations) show that 2 is formed via 3 and 4, with either N2 or N2H4. This strengthens the previous proposal of the existence of 3 and 4 as intermediates in the reaction of N2 with the tantalum-hydrides. However, the reaction of N2 does not imply the formation of N2H4 or its hydrazido monoanionic or dianionic ligand as an intermediate. For this reason, this study informs both on the similarities and differences of the reaction pathways involving N2 and N2H4 with tantalum-hydrides.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa