Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37288516

RESUMO

Mounting evidence suggests that animals and their associated bacteria interact via intricate molecular mechanisms, and it is hypothesized that disturbances to the microbiome influence animal development. Here, we show that the loss of a key photosymbiont (i.e., bleaching) upon shading correlates with a stark body-plan reorganization in the common aquarium cyanosponge Lendenfeldia chondrodes. The morphological changes observed in shaded sponges include the development of a thread-like morphology that contrasts with the flattened, foliose morphology of control specimens. The microanatomy of shaded sponges markedly differed from that of control sponges, with shaded specimens lacking a well-developed cortex and choanosome. Also, the palisade of polyvacuolar gland-like cells typical in control specimens was absent in shaded sponges. The morphological changes observed in shaded specimens are coupled with broad transcriptomic changes and include the modulation of signaling pathways involved in animal morphogenesis and immune response, such as the Wnt, transforming growth factor ß (TGF-ß), and TLR-ILR pathways. This study provides a genetic, physiological, and morphological assessment of the effect of microbiome changes on sponge postembryonic development and homeostasis. The correlated response of the sponge host to the collapse of the population of symbiotic cyanobacteria provides evidence for a coupling between the sponge transcriptomic state and the state of its microbiome. This coupling suggests that the ability of animals to interact with their microbiomes and respond to microbiome perturbations has deep evolutionary origins in this group.


Assuntos
Microbiota , Poríferos , Animais , Bactérias/genética , Evolução Biológica , Simbiose
2.
Cell Tissue Res ; 385(3): 623-637, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33876313

RESUMO

From a morphological point of view, placozoans are among the most simple free-living animals. This enigmatic phylum is critical for our understanding of the evolution of animals and their cell types. Their millimeter-sized, disc-like bodies consist of only three cell layers that are shaped by roughly seven major cell types. Placozoans lack muscle cells and neurons but are able to move using their ciliated lower surface and take up food in a highly coordinated manner. Intriguingly, the genome of Trichoplax adhaerens, the founding member of the enigmatic phylum, has disclosed a surprising level of genetic complexity. Moreover, recent molecular and functional investigations have uncovered a much larger, so-far hidden cell-type diversity. Here, we have extended the microanatomical characterization of a recently described placozoan species-Hoilungia hongkongensis. In H. hongkongensis, we recognized the established canonical three-layered placozoan body plan but also came across several morphologically distinct and potentially novel cell types, among them novel gland cells and "shiny spheres"-bearing cells at the upper epithelium. Thus, the diversity of cell types in placozoans is indeed higher than anticipated.


Assuntos
Filogenia , Placozoa/ultraestrutura , Animais
4.
PLoS Biol ; 16(7): e2005359, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30063702

RESUMO

Placozoans are a phylum of nonbilaterian marine animals currently represented by a single described species, Trichoplax adhaerens, Schulze 1883. Placozoans arguably show the simplest animal morphology, which is identical among isolates collected worldwide, despite an apparently sizeable genetic diversity within the phylum. Here, we use a comparative genomics approach for a deeper appreciation of the structure and causes of the deeply diverging lineages in the Placozoa. We generated a high-quality draft genome of the genetic lineage H13 isolated from Hong Kong and compared it to the distantly related T. adhaerens. We uncovered substantial structural differences between the two genomes that point to a deep genomic separation and provide support that adaptation by gene duplication is likely a crucial mechanism in placozoan speciation. We further provide genetic evidence for reproductively isolated species and suggest a genus-level difference of H13 to T. adhaerens, justifying the designation of H13 as a new species, Hoilungia hongkongensis nov. gen., nov. spec., now the second described placozoan species and the first in a new genus. Our multilevel comparative genomics approach is, therefore, likely to prove valuable for species distinctions in other cryptic microscopic animal groups that lack diagnostic morphological characters, such as some nematodes, copepods, rotifers, or mites.


Assuntos
Genômica , Placozoa/genética , Alelos , Animais , Sequência de Bases , DNA Ribossômico/genética , Duplicação Gênica , Rearranjo Gênico/genética , Especiação Genética , Variação Genética , Genoma , Anotação de Sequência Molecular , Filogenia , Placozoa/ultraestrutura , Isolamento Reprodutivo
5.
Angew Chem Int Ed Engl ; 60(24): 13536-13541, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33768597

RESUMO

Brasilicardin A (1) consists of an unusual anti/syn/anti-perhydrophenanthrene skeleton with a carbohydrate side chain and an amino acid moiety. It exhibits potent immunosuppressive activity, yet its mode of action differs from standard drugs that are currently in use. Further pre-clinical evaluation of this promising, biologically active natural product is hampered by restricted access to the ready material, as its synthesis requires both a low-yielding fermentation process using a pathogenic organism and an elaborate, multi-step total synthesis. Our semi-synthetic approach included a) the heterologous expression of the brasilicardin A gene cluster in different non-pathogenic bacterial strains producing brasilicardin A aglycone (5) in excellent yield and b) the chemical transformation of the aglycone 5 into the trifluoroacetic acid salt of brasilicardin A (1 a) via a short and straightforward five-steps synthetic route. Additionally, we report the first preclinical data for brasilicardin A.


Assuntos
Aminoglicosídeos/metabolismo , Engenharia Genética , Imunossupressores/síntese química , Alquil e Aril Transferases/genética , Aminoglicosídeos/síntese química , Aminoglicosídeos/química , Aminoglicosídeos/farmacologia , Animais , Produtos Biológicos/síntese química , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Imunossupressores/química , Imunossupressores/metabolismo , Imunossupressores/farmacologia , Camundongos , Plasmídeos/genética , Plasmídeos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Terpenos/química
6.
Mol Biol Evol ; 36(4): 643-649, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30690573

RESUMO

Resolving the relationships of animals (Metazoa) is crucial to our understanding of the origin of key traits such as muscles, guts, and nerves. However, a broadly accepted metazoan consensus phylogeny has yet to emerge. In part, this is because the genomes of deeply diverging and fast-evolving lineages may undergo significant gene turnover, reducing the number of orthologs shared with related phyla. This can limit the usefulness of traditional phylogenetic methods that rely on alignments of orthologous sequences. Phylogenetic analysis of gene content has the potential to circumvent this orthology requirement, with binary presence/absence of homologous gene families representing a source of phylogenetically informative characters. Applying binary substitution models to the gene content of 26 complete animal genomes, we demonstrate that patterns of gene conservation differ markedly depending on whether gene families are defined by orthology or homology, that is, whether paralogs are excluded or included. We conclude that the placement of some deeply diverging lineages may exceed the limit of resolution afforded by the current methods based on comparisons of orthologous protein sequences, and novel approaches are required to fully capture the evolutionary signal from genes within genomes.


Assuntos
Cordados/genética , Genoma , Invertebrados/genética , Família Multigênica , Filogenia , Animais , Técnicas Genéticas , Humanos
7.
Mol Phylogenet Evol ; 148: 106814, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32278076

RESUMO

The membrane-associated progesterone receptor (MAPR) family consists of heme-binding proteins containing a cytochrome b5 (cytb5) domain characterized by the presence of a MAPR-specific interhelical insert region (MIHIR) between helices 3 and 4 of the canonical cytb5-domain fold. Animals possess three MAPR genes (PGRMC-like, Neuferricin and Neudesin). Here we show that all three animal MAPR genes were already present in the common ancestor of the opisthokonts (comprising animals and fungi as well as related single-celled taxa). All three MAPR genes acquired extensions C-terminal to the cytb5 domain, either before or with the evolution of animals. The archetypical MAPR protein, progesterone receptor membrane component 1 (PGRMC1), contains phosphorylated tyrosines Y139 and Y180. The combination of Y139/Y180 appeared in the common ancestor of cnidarians and bilaterians, along with an early embryological organizer and synapsed neurons, and is strongly conserved in all bilaterian animals. A predicted protein interaction motif in the PGRMC1 MIHIR is potentially regulated by Y139 phosphorylation. A multilayered model of animal MAPR function acquisition includes some pre-metazoan functions (e.g., heme binding and cytochrome P450 interactions) and some acquired animal-specific functions that involve regulation of strongly conserved protein interaction motifs acquired by animals (Metazoa). This study provides a conceptual framework for future studies, against which especially PGRMC1's multiple functions can perhaps be stratified and functionally dissected.


Assuntos
Eucariotos/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Progesterona/metabolismo , Sequência de Aminoácidos , Animais , Evolução Molecular , Proteínas de Membrana/química , Filogenia , Ligação Proteica , Domínios Proteicos , Receptores de Progesterona/química , Receptores de Progesterona/genética
8.
PLoS Genet ; 8(11): e1003019, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144623

RESUMO

It is generally believed that the last eukaryotic common ancestor (LECA) was a unicellular organism with motile cilia. In the vertebrates, the winged-helix transcription factor FoxJ1 functions as the master regulator of motile cilia biogenesis. Despite the antiquity of cilia, their highly conserved structure, and their mechanism of motility, the evolution of the transcriptional program controlling ciliogenesis has remained incompletely understood. In particular, it is presently not known how the generation of motile cilia is programmed outside of the vertebrates, and whether and to what extent the FoxJ1-dependent regulation is conserved. We have performed a survey of numerous eukaryotic genomes and discovered that genes homologous to foxJ1 are restricted only to organisms belonging to the unikont lineage. Using a mis-expression assay, we then obtained evidence of a conserved ability of FoxJ1 proteins from a number of diverse phyletic groups to activate the expression of a host of motile ciliary genes in zebrafish embryos. Conversely, we found that inactivation of a foxJ1 gene in Schmidtea mediterranea, a platyhelminth (flatworm) that utilizes motile cilia for locomotion, led to a profound disruption in the differentiation of motile cilia. Together, all of these findings provide the first evolutionary perspective into the transcriptional control of motile ciliogenesis and allow us to propose a conserved FoxJ1-regulated mechanism for motile cilia biogenesis back to the origin of the metazoans.


Assuntos
Evolução Biológica , Movimento Celular , Cílios , Fatores de Transcrição Forkhead , Animais , Diferenciação Celular , Cílios/genética , Cílios/metabolismo , Cílios/fisiologia , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Vertebrados/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra
9.
Ecol Evol ; 14(4): e11220, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606341

RESUMO

The marine animal phylum Placozoa is characterized by a poorly explored cryptic biodiversity combined with very limited knowledge of their ecology. While placozoans are typically found as part of the epibenthos of coastal waters, known placozoan predators, namely small, shell-less sea slugs belonging to the family Rhodopidae (Mollusca: Gastropoda: Heterobranchia), inhabit the interstitium of seafloor sediment. In order to gain further insights into this predator-prey relationship and to expand our understanding of placozoan ecological niches, we screened publicly available whole-body metagenomic data from two rhodopid specimens collected from coastal sediments. Our analysis not only revealed the signatures of three previously unknown placozoan lineages in these sea slug samples but also enabled the assembly of three complete and two partial mitochondrial chromosomes belonging to four previously described placozoan genera, substantially extending the picture of placozoan biodiversity. Our findings further refine the molecular phylogeny of the Placozoa, corroborate the recently established taxonomic ranks in this phylum, and provide molecular support that known placozoan clades should be referred to as genera. We finally discuss the main finding of our study - the presence of placozoans in the sea floor sediment interstitium - in the context of their ecological, biological, and natural history implications.

10.
Methods Mol Biol ; 2757: 509-529, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38668981

RESUMO

The phylum Placozoa remains one of the least explored among early-branching metazoan lineages. For over 130 years, this phylum had been represented by the single species Trichoplax adhaerens-an animal with the simplest known body plan (three cell layers without any organs) but complex behaviors. Recently, extensive sampling of placozoans across the globe and their subsequent genetic analysis have revealed incredible biodiversity with numerous cryptic species worldwide. However, only a few culture protocols are available to date, and all are for one species only. Here, we describe the breeding of four different species representing two placozoan genera: Trichoplax adhaerens, Trichoplax sp. H2, Hoilungia sp. H4, and Hoilungia hongkongensis originating from diverse biotopes. Our protocols allow to culture all species under comparable conditions. Next, we outlined various food sources and optimized strain-specific parameters enabling long-term culturing. These protocols can facilitate comparative analyses of placozoan biology and behaviors, which together will contribute to deciphering general principles of animal organization.


Assuntos
Placozoa , Animais , Placozoa/genética
11.
Nat Commun ; 15(1): 604, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242880

RESUMO

Explosivity in erupting volcanoes is controlled by the degassing dynamics and the viscosity of the ascending magma in the conduit. Magma crystallisation enhances both heterogeneous bubble nucleation and increases in magma bulk viscosity. Nanolite crystallisation has been suggested to enhance such processes too, but in a noticeably higher extent. Yet the precise causes of the resultant strong viscosity increase remain unclear. Here we report experimental results for rapid nanolite crystallisation in natural silicic magma and the extent of the subsequent viscosity increase. Nanolite-free and nanolite-bearing rhyolite magmas were subjected to heat treatments, where magmas crystallised or re-crystallised oxide nanolites depending on their initial state, showing an increase of one order of magnitude as oxide nanolites formed. We thus demonstrate that oxide nanolites crystallisation increases magma bulk viscosity mainly by increasing the viscosity of its melt phase due to the chemical extraction of iron, whereas the physical effect of particle suspension is minor, almost negligible. Importantly, we further observe that this increase is sufficient for driving magma fragmentation depending on magma degassing and ascent dynamics.

12.
Mol Phylogenet Evol ; 66(2): 551-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22683435

RESUMO

The ever-lingering question: "What did the urmetazoan look like?" has not lost its charm, appeal or elusiveness for one and a half centuries. A solid amount of organismal data give what some feel is a clear answer (e.g. Placozoa are at the base of the metazoan tree of life (ToL)), but a diversity of modern molecular data gives almost as many answers as there are exemplars, and even the largest molecular data sets could not solve the question and sometimes even suggest obvious zoological nonsense. Since the problems involved in this phylogenetic conundrum encompass a wide array of analytical freedom and uncertainty it seems questionable whether a further increase in molecular data (quantity) can solve this classical deep phylogeny problem. This review thus strikes a blow for evaluating quality data (including morphological, molecule morphologies, gene arrangement, and gene loss versus gene gain data) in an appropriate manner.


Assuntos
Evolução Biológica , Filogenia , Animais , Placozoa/anatomia & histologia , Placozoa/classificação , Placozoa/genética
13.
Mol Phylogenet Evol ; 69(2): 339-51, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23891951

RESUMO

Unraveling the base of metazoan evolution is of crucial importance for rooting the metazoan Tree of Life. This subject has attracted substantial attention for more than a century and recently fueled a burst of modern phylogenetic studies. Conflicting scenarios from different studies and incongruent results from nuclear versus mitochondrial markers challenge current molecular phylogenetic approaches. Here we analyze the presently most comprehensive data sets of mitochondrial genomes from non-bilaterian animals to illuminate the phylogenetic relationships among early branching metazoan phyla. The results of our analyses illustrate the value of mitogenomics and support previously known topologies between animal phyla but also identify several problematic taxa, which are sensitive to long branch artifacts or missing data.


Assuntos
Evolução Molecular , Genoma Mitocondrial , Filogenia , Animais , Cnidários/classificação , Ctenóforos/classificação , Modelos Genéticos , Placozoa/classificação , Poríferos/classificação , Análise de Sequência de DNA
14.
Mol Phylogenet Evol ; 67(1): 223-33, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23353073

RESUMO

Molecular phylogenetic analyses have produced a plethora of controversial hypotheses regarding the patterns of diversification of non-bilaterian animals. To unravel the causes for the patterns of extreme inconsistencies at the base of the metazoan tree of life, we constructed a novel supermatrix containing 122 genes, enriched with non-bilaterian taxa. Comparative analyses of this supermatrix and its two non-overlapping multi-gene partitions (including ribosomal and non-ribosomal genes) revealed conflicting phylogenetic signals. We show that the levels of saturation and long branch attraction artifacts in the two partitions correlate with gene sampling. The ribosomal gene partition exhibits significantly lower saturation levels than the non-ribosomal one. Additional systematic errors derive from significant variations in amino acid substitution patterns among the metazoan lineages that violate the stationarity assumption of evolutionary models frequently used to reconstruct phylogenies. By modifying gene sampling and the taxonomic composition of the outgroup, we were able to construct three different yet well-supported phylogenies. These results show that the accuracy of phylogenetic inference may be substantially improved by selecting genes that evolve slowly across the Metazoa and applying more realistic substitution models. Additional sequence-independent genomic markers are also necessary to assess the validity of the phylogenetic hypotheses.


Assuntos
Ctenóforos/classificação , Filogenia , Placozoa/classificação , Poríferos/classificação , Ribossomos/genética , Animais , Teorema de Bayes , Ctenóforos/genética , Genômica , Funções Verossimilhança , Modelos Genéticos , Placozoa/genética , Poríferos/genética
15.
R Soc Open Sci ; 10(6): 230423, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37351491

RESUMO

Well-annotated and contiguous genomes are an indispensable resource for understanding the evolution, development, and metabolic capacities of organisms. Sponges, an ecologically important non-bilaterian group of primarily filter-feeding sessile aquatic organisms, are underrepresented with respect to available genomic resources. Here we provide a high-quality and well-annotated genome of Aphrocallistes vastus, a glass sponge (Porifera: Hexactinellida) that forms large reef structures off the coast of British Columbia (Canada). We show that its genome is approximately 80 Mb, small compared to most other metazoans, and contains nearly 2500 nested genes, more than other genomes. Hexactinellida is characterized by a unique skeletal architecture made of amorphous silicon dioxide (SiO2), and we identified 419 differentially expressed genes between the osculum, i.e. the vertical growth zone of the sponge, and the main body. Among the upregulated ones, mineralization-related genes such as glassin, as well as collagens and actins, dominate the expression profile during growth. Silicateins, suggested being involved in silica mineralization, especially in demosponges, were not found at all in the A. vastus genome and suggests that the underlying mechanisms of SiO2 deposition in the Silicea sensu stricto (Hexactinellida + Demospongiae) may not be homologous.

16.
PLoS Biol ; 7(1): e20, 2009 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-19175291

RESUMO

For more than a century, the origin of metazoan animals has been debated. One aspect of this debate has been centered on what the hypothetical "urmetazoon" bauplan might have been. The morphologically most simply organized metazoan animal, the placozoan Trichoplax adhaerens, resembles an intriguing model for one of several "urmetazoon" hypotheses: the placula hypothesis. Clear support for a basal position of Placozoa would aid in resolving several key issues of metazoan-specific inventions (including, for example, head-foot axis, symmetry, and coelom) and would determine a root for unraveling their evolution. Unfortunately, the phylogenetic relationships at the base of Metazoa have been controversial because of conflicting phylogenetic scenarios generated while addressing the question. Here, we analyze the sum of morphological evidence, the secondary structure of mitochondrial ribosomal genes, and molecular sequence data from mitochondrial and nuclear genes that amass over 9,400 phylogenetically informative characters from 24 to 73 taxa. Together with mitochondrial DNA genome structure and sequence analyses and Hox-like gene expression patterns, these data (1) provide evidence that Placozoa are basal relative to all other diploblast phyla and (2) spark a modernized "urmetazoon" hypothesis.


Assuntos
Evolução Molecular , Filogenia , Placozoa/anatomia & histologia , Placozoa/fisiologia , Animais , Padronização Corporal , DNA Mitocondrial/química , DNA Ribossômico/química , Expressão Gênica , Genoma Mitocondrial , Placozoa/classificação , RNA Ribossômico 18S , Análise de Sequência de DNA
17.
Mol Ecol Resour ; 22(5): 2070-2086, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35119207

RESUMO

The use of RNA sequencing (RNA-Seq) data and the generation of de novo transcriptome assemblies have been pivotal for studies in ecology and evolution. This is especially true for nonmodel organisms, where no genome information is available. In such organisms, studies of differential gene expression, DNA enrichment bait design and phylogenetics can all be accomplished with de novo transcriptome assemblies. Multiple tools are available for transcriptome assembly, but no single tool can provide the best assembly for all data sets. Therefore, a multi-assembler approach, followed by a reduction step, is often sought to generate an improved representation of the assembly. To reduce errors in these complex analyses while at the same time attaining reproducibility and scalability, automated workflows have been essential in the analysis of RNA-Seq data. However, most of these tools are designed for species where genome data are used as reference for the assembly process, limiting their use in nonmodel organisms. We present TransPi, a comprehensive pipeline for de novo transcriptome assembly, with minimum user input but without losing the ability of a thorough analysis. A combination of different model organisms, k-mer sets, read lengths and read quantities was used for assessing the tool. Furthermore, a total of 49 nonmodel organisms, spanning different phyla, were also analysed. Compared to approaches using single assemblers only, TransPi produces higher BUSCO completeness percentages, and a concurrent significant reduction in duplication rates. TransPi is easy to configure and can be deployed seamlessly using Conda, Docker and Singularity.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Reprodutibilidade dos Testes , Análise de Sequência de RNA
18.
Methods Mol Biol ; 2450: 121-133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359305

RESUMO

Placozoans are a promising model system to study fundamental regeneration processes in a morphologically and genetically very simple animal. We here provide a brief introduction to the enigmatic Placozoa and summarize the state of the art of animal handling and experimental manipulation possibilities.


Assuntos
Placozoa , Animais , Placozoa/genética
19.
Carbohydr Res ; 504: 108312, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33895608

RESUMO

Methanol dried over powdered 4 Å molecular sieves can be used for a selective mono-de-O-acetylation of the phenolic acetyl group of the per-O-acetyl protected brasilicardin A carbohydrate side chain. This reaction opens a practical procedure for a synthetic access to derivates of the immunosuppressive and cytotoxic natural product brasilicardin A.


Assuntos
Carboidratos , Acetilação , Processamento de Proteína Pós-Traducional
20.
Eng Life Sci ; 21(1-2): 4-18, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33531886

RESUMO

Brasilicardin A (BraA) is a promising immunosuppressive compound produced naturally by the pathogenic bacterium Nocardia terpenica IFM 0406. Heterologous host expression of brasilicardin gene cluster showed to be efficient to bypass the safety issues, low production levels and lack of genetic tools related with the use of native producer. Further improvement of production yields requires better understanding of gene expression regulation within the BraA biosynthetic gene cluster (Bra-BGC); however, the only so far known regulator of this gene cluster is Bra12. In this study, we discovered the protein LysRNt, a novel member of the LysR-type transcriptional regulator family, as a regulator of the Bra-BGC. Using in vitro approaches, we identified the gene promoters which are controlled by LysRNt within the Bra-BGC. Corresponding genes encode enzymes involved in BraA biosynthesis as well as the key Bra-BGC regulator Bra12. Importantly, we provide in vivo evidence that LysRNt negatively affects production of brasilicardin congeners in the heterologous host Amycolatopsis japonicum. Finally, we demonstrate that some of the pathway related metabolites, and their chemical analogs, can interact with LysRNt which in turn affects its DNA-binding activity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa