Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(14): 8007-8020, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36977204

RESUMO

The unique layered structure of graphite with its tunable interlayer distance establishes almost ideal conditions for the accommodation of ions into its structure. The smooth and chemically inert nature of the graphite surface also means that it is an ideal substrate for electrowetting. Here, we combine these two unique properties of this material by demonstrating the significant effect of anion intercalation on the electrowetting response of graphitic surfaces in contact with concentrated aqueous and organic electrolytes as well as ionic liquids. The structural changes during intercalation/deintercalation were probed using in situ Raman spectroscopy, and the results were used to provide insights into the influence of intercalation staging on the rate and reversibility of electrowetting. We show, by tuning the size of the intercalant and the stage of intercalation, that a fully reversible electrowetting response can be attained. The approach is extended to the development of biphasic (oil/water) systems that exhibit a fully reproducible electrowetting response with a near-zero voltage threshold and unprecedented contact angle variations of more than 120° within a potential window of less than 2 V.

2.
Faraday Discuss ; 190: 127-45, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27228384

RESUMO

Environmental concerns have brought attention to the requirement for more efficient and renewable processes for chemicals production. Lignin is the second most abundant natural polymer, and might serve as a sustainable resource for manufacturing fuels and aromatic derivatives for the chemicals industry after being depolymerised. In this work, the mediator 2,2'-azino-bis(3-ethylbenthiazoline-6-sulfonic acid) diammonium salt (ABTS), commonly used with enzyme degradation systems, has been evaluated by means of cyclic voltammetry (CV) for enhancing the oxidation of the non-phenolic lignin model compound veratryl alcohol and three types of lignin (organosolv, Kraft and lignosulfonate) in the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate, ([C2mim][C2SO4]). The presence of either veratryl alcohol or organosolv lignin increased the second oxidation peak of ABTS under select conditions, indicating the ABTS-mediated oxidation of these molecules at high potentials in [C2mim][C2SO4]. Furthermore, CV was applied as a quick and efficient way to explore the impact of water in the ABTS-mediated oxidation of both organosolv and lignosulfonate lignin. Higher catalytic efficiencies of ABTS were observed for lignosulfonate solutions either in sodium acetate buffer or when [C2mim][C2SO4] (15 v/v%) was present in the buffer solution, whilst there was no change found in the catalytic efficiency of ABTS in [C2mim][C2SO4]-lignosulfonate mixtures relative to ABTS alone. In contrast, organosolv showed an initial increase in oxidation, followed by a significant decrease on increasing the water content of a [C2mim][C2SO4] solution.


Assuntos
Biomassa , Líquidos Iônicos/química , Lignina/química , Benzotiazóis/química , Álcoois Benzílicos/química , Soluções Tampão , Catálise , Eficiência , Eletroquímica , Transferência de Energia , Imidazóis , Indicadores e Reagentes , Oxirredução , Ácidos Sulfônicos/química , Viscosidade , Água/química
3.
Nanoscale ; 16(28): 13597-13612, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38958552

RESUMO

The nanoscale form of the Chevrel phase, Mo6S8, is demonstrated to be a highly efficient zinc-free anode in aqueous zinc ion hybrid supercapacitors (ZIHSCs). The unique morphological characteristics of the material when its dimensions approach the nanoscale result in fast zinc intercalation kinetics that surpass the ion transport rate reported for some of the most promising materials, such as TiS2 and TiSe2. In situ Raman spectroscopy, post-mortem X-ray diffraction, Hard X-ray photoelectron spectroscopy, and density functional theory (DFT) calculations were combined to understand the overall mechanism of the zinc ion (de)intercalation process. The previously unknown formation of the sulfur-deficient Zn2.9Mo15S19 (Zn1.6Mo6S7.6) phase is identified, leading to a re-evaluation of the mechanism of the (de)intercalation process. A full cell comprised of an activated carbon (YEC-8A) positive electrode delivers a cell capacity of 38 mA h g-1 and an energy density of 43.8 W h kg-1 at a specific current density of 0.2 A g-1. The excellent cycling stability of the device is demonstrated for up to 8000 cycles at 3 A g-1 with a coulombic efficiency close to 100%. Post-mortem microscopic studies reveal the absence of dendrite formation at the nanosized Mo6S8 anode, in stark contrast to the state-of-the-art zinc electrode.

4.
Phys Chem Chem Phys ; 15(20): 7548-54, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23584277

RESUMO

The oxygen reduction reaction (ORR) has been studied at Pt surfaces in the protic ionic liquid diethylmethylammonium trifluoromethanesulfonate. Water content measurements suggested that the ORR proceeded in the ionic liquid predominantly via a 4-electron reduction to water. A mechanistic analysis using rotating ring-disk electrode (RRDE) voltammetry confirmed that negligible amounts of hydrogen peroxide were formed during the ORR. A kinetic analysis of the ORR was performed using rotating disk electrode (RDE) voltammetry and the importance of correcting for ohmic (iR) drop prior to performing kinetic measurements in the ionic liquid is demonstrated. A Tafel analysis of the RDE voltammetry data revealed a change in the ORR Tafel slope from 70 mV per decade at low ORR overpotentials to 117 mV per decade at high overpotentials, and the reason for this change is discussed. The change in the Tafel slope for the ORR with increasing overpotential meant that the exchange current density for the ORR varied from 0.007 nA cm(-2) to 10 nA cm(-2), depending on the applied potential. Finally, the implications of these results for the development of protic ionic liquid fuel cells are discussed.


Assuntos
Líquidos Iônicos/química , Oxigênio/química , Técnicas Eletroquímicas , Eletrodos , Cinética , Oxirredução
5.
ACS Appl Mater Interfaces ; 14(22): 25232-25245, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35622978

RESUMO

Aqueous rechargeable batteries based on aluminum chemistry have become the focus of immense research interest owing to their earth abundance, low cost, and the higher theoretical volumetric energy density of this element compared to lithium-ion batteries. Efforts to harness this huge potential have been hindered by the narrow potential window of water and by passivating effects of the high-electrical band-gap aluminum oxide film. Herein, we report a high-performing aqueous aluminum-ion battery (AIB), which is constructed using a Zn-supported Al alloy, an aluminum bis(trifluoromethanesulfonyl)imide (Al[TFSI]3) electrolyte, and a MnO2 cathode. The use of Al[TFSI]3 significantly extends the voltage window of the electrolyte and enables the cell to access Al3+/Al electrochemistry, while the use of Zn-Al alloy mitigates the issue of surface passivation. The Zn-Al alloy, which is produced by in situ electrochemical deposition, obtained from Al[TFSI]3 showed excellent long-term reversibility for Al electrochemistry and displays the highest performance in AIB when compared to the response obtained in Al2(SO4)3 or aluminum trifluoromethanesulfonate electrolyte. AIB cells constructed using the Zn-Al|Al[TFSI]3|MnO2 combination achieved a record discharge voltage plateau of 1.75 V and a specific capacity of 450 mAh g-1 without significant capacity fade after 400 cycles. These findings will promote the development of energy-dense aqueous AIBs.

6.
Phys Chem Chem Phys ; 13(21): 10155-64, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21526252

RESUMO

The electrochemical behaviour of ferrocenemethanol (FcMeOH) has been studied in a range of room-temperature ionic liquids (RTILs) using cyclic voltammetry, chronoamperomery and scanning electrochemical microscopy (SECM). The diffusion coefficient of FcMeOH, measured using chronoamperometry, decreased with increasing RTIL viscosity. Analysis of the mass transport properties of the RTILs revealed that the Stokes-Einstein equation did not apply to our data. The "correlation length" was estimated from diffusion coefficient data and corresponded well to the average size of holes (voids) in the liquid, suggesting that a model in which the diffusing species jumps between holes in the liquid is appropriate in these liquids. Cyclic voltammetry at ultramicroelectrodes demonstrated that the ability to record steady-state voltammograms during ferrocenemethanol oxidation depended on the voltammetric scan rate, the electrode dimensions and the RTIL viscosity. Similarly, the ability to record steady-state SECM feedback approach curves depended on the RTIL viscosity, the SECM tip radius and the tip approach speed. Using 1.3 µm Pt SECM tips, steady-state SECM feedback approach curves were obtained in RTILs, provided that the tip approach speed was low enough to maintain steady-state diffusion at the SECM tip. In the case where tip-induced convection contributed significantly to the SECM tip current, this effect could be accounted for theoretically using mass transport equations that include diffusive and convective terms. Finally, the rate of heterogeneous electron transfer across the electrode/RTIL interface during ferrocenemethanol oxidation was estimated using SECM, and k(0) was at least 0.1 cm s(-1) in one of the least viscous RTILs studied.

7.
ACS Appl Mater Interfaces ; 13(12): 14112-14121, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33724772

RESUMO

The development of rechargeable Zinc-ion batteries (ZIBs) has been hindered by the lack of efficient cathode materials due to the strong binding of divalent zinc ions with the host lattice. Herein, we report a strategy that eliminates the participation of Zn2+ within the cathode chemistry. The approach involves the use of composite cathode materials that contain Zn halides (ZnCl2, ZnBr2, and ZnI2) and carbon (graphite or activated carbon), where the halide ions act both as charge carriers and redox centers while using a Zn2+-conducting water-in-salt gel electrolyte. The use of graphite in the composite electrode produced batterylike behavior, where the voltage plateau was related to the standard potential of the halogen species. When activated carbon was used in the composite, however, the cell acted as a hybrid Zn-ion capacitor due to the fast, reversible halide ion electrosorption/desorption in the carbon pores. The ZnX2-activated carbon composite delivers a capacity of over 400 mAh g-1 and cell energy density of 140 Wh kg-1 while retaining over 95% of its capacity after 500 cycles. The halogen reaction mechanism has been elucidated using combinations of electrochemical and in situ spectroscopic techniques.

8.
Chem Commun (Camb) ; 57(43): 5294-5297, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33942833

RESUMO

The high temperature performance of water-in-salt electrolytes was investigated using a carbon-based electrode with commercial cell components. Supercapacitors using 21 m Li bis(trifluoromethylsulphonyl)imide (TFSI) and 21 m LiTFSI + 7 m Li trifluoromethanesulphonyl electrolytes are shown to operate at a voltage of 2 V at 100 °C and 120 °C, respectively, with gravimetric capacitances exceeding 100 F g-1.

9.
Chem Sci ; 11(27): 6978-6989, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34122994

RESUMO

A new approach to expand the accessible voltage window of electrochemical energy storage systems, based on so-called "water-in-salt" electrolytes, has been expounded recently. Although studies of transport in concentrated electrolytes date back over several decades, the recent demonstration that concentrated aqueous electrolyte systems can be used in the lithium ion battery context has rekindled interest in the electrochemical properties of highly concentrated aqueous electrolytes. The original aqueous lithium ion battery conception was based on the use of concentrated solutions of lithium bis(trifluoromethanesulfonyl)imide, although these electrolytes still possess some drawbacks including cost, toxicity, and safety. In this work we describe the electrochemical behavior of a simple 1 : 1 electrolyte based on highly concentrated aqueous solutions of potassium fluoride (KF). Highly ordered pyrolytic graphite (HOPG) is used as well-defined model carbon to study the electrochemical properties of the electrolyte, as well as its basal plane capacitance, from a microscopic perspective: the KF electrolyte exhibits an unusually wide potential window (up to 2.6 V). The faradaic response on HOPG is also reported using K3Fe(CN)6 as a model redox probe: the highly concentrated electrolyte provides good electrochemical reversibility and protects the HOPG surface from adsorption of contaminants. Moreover, this electrolyte was applied to symmetrical supercapacitors (using graphene and activated carbon as active materials) in order to quantify its performance in energy storage applications. It is found that the activated carbon and graphene supercapacitors demonstrate high gravimetric capacitance (221 F g-1 for activated carbon, and 56 F g-1 for graphene), a stable working voltage window of 2.0 V, which is significantly higher than the usual range of water-based capacitors, and excellent stability over 10 000 cycles. These results provide fundamental insight into the wider applicability of highly concentrated electrolytes, which should enable their application in future of energy storage technologies.

10.
ACS Appl Mater Interfaces ; 11(26): 23261-23270, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31252480

RESUMO

The current state-of-the-art positive electrode material for chloroaluminate ion batteries (AIBs) or dual-ion batteries (DIBs) is highly crystalline graphite; however, the rate capability of this material at high discharge currents is significantly reduced by the modest conductivity of graphite. This limitation is addressed through the use of graphene-based positive electrodes, which can improve the rate capability of these batteries due to their higher conductivity. However, conventional methods of graphene production induce a significant number of defects, which impair the performance of AIBs and DIBs. Herein, we report the use of a defect-free graphene positive electrode, which was produced using the electrochemical exfoliation of graphite in an aqueous solution with the aid of Co2+ as an antioxidant. The Co-treated graphene electrode achieved high capacities of 150 mAh g-1 in DIBs and 130 mAh g-1 in AIBs with high rate capability for both batteries. The charge-discharge mechanism of the batteries is examined using in situ Raman spectroscopy, and the results revealed that the intercalation density of [AlCl4]- or [PF6]- increased from a dilute staging index graphite intercalation compound (GIC) to a stage 1 GIC within the operating voltage window. The simple production method of high-quality graphene in conjunction with its high performance in DIBs should enable the use of graphene for DIB technologies.

11.
ACS Appl Mater Interfaces ; 9(1): 710-721, 2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-27936538

RESUMO

Development of applications for graphene are currently hampered by its poor dispersion in common, low boiling point solvents. Covalent functionalization is considered as one method for addressing this challenge. To date, approaches have tended to focus upon producing the graphene and functionalizing subsequently. Herein, we describe simultaneous electrochemical exfoliation and functionalization of graphite using diazonium salts at a single applied potential for the first time. Such an approach is advantageous, compared to postfunctionalization of premade graphene, as both functionalization and exfoliation occur at the same time, meaning that monolayer or few-layer graphene can be functionalized and stabilized in situ before they aggregate. Furthermore, the N2 generated during in situ diazonium reduction is found to aid the separation of functionalized graphene sheets. The degree of graphene functionalization was controlled by varying the concentration of the diazonium species in the exfoliation solution. The formation of functionalized graphene was confirmed using Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. The functionalized graphene was soluble in aqueous systems, and its solubility was 2 orders of magnitude higher than the nonfunctionalized electrochemically exfoliated graphene sheets. Moreover, the functionalization enhanced the charge storage capacity when used as an electrode in supercapacitor devices with the specific capacitance being highly dependent on the degree of graphene functionalization. This simple method of in situ simultaneous exfoliation and functionaliztion may aid the processing of graphene for various applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa