Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 202(9): 4007-4020, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38114777

RESUMO

Cadmium (Cd) is an environmental pollutant known as endocrine disruptor . Cd has been reported to induce perturbations of the testicular functions and the subsequent decline of the male fertility of both animals and humans. Chlorella vulgaris (ChV) a species of green microalga has been reported to have multiple beneficial activities such as anti-inflammatory, antioxidant, and antiapoptotic effects. Thus, this work was conducted to declare the benefits of Chlorella vulgaris (ChV) (500 mg/kg doses) against cadmium chloride CdCl2 (2 mg/kg doses) toxicity on the main and accessory reproductive organs' weight, structure, and function of male rats. Briefly, 40 adult male rats in 4 groups (n = 10) were used as follows; control, ChV, CdCl2, and CdCl2+ChV. (i) The 1st group was kept as control fed on pellet chow and water ad libitum. (ii) The second group is Chlorella vulgaris (ChV) group fed with C. vulgaris alga for 10 days (500 mg/kg BW). (iii) The third group was administrated CdCl2 (2mg/kg BW) via subcutaneous injection (S/C) daily for 10 days. (iv) The fourth group administered both CdCl2 and ChV with the abovementioned doses daily for successive 10 days. Our observations declared that cadmium exhibited an adverse influence on the testes and prostate gland architecture indicated by seminiferous tubule destruction, testicular edema, degeneration of Leydig cells, and prostate acini damage. All together affect the epididymal semen quality and quantity including sperm viability, motility, and count. Interestingly, ChV could restore the testicular architecture and spermatozoa regeneration accompanied by semen quality improvement and increased reproductive hormones including testosterone. On the other side, ChV suppresses reactive oxygen species (ROS) formation via enhancement the antioxidant-related genes in the testicular tissue including SOD, CAT, GSH, and MDA and maintaining spermatocyte survival via suppression of apoptotic related genes including caspase3 and activating steroidogenic related genes including StAR and HSD17ß3 in the cadmium-treated testes. In this study, ChV could enhance male fertility under normal or stressful conditions and ameliorate the adverse effects of hazardous heavy metals that are widely distributed in our environment.


Assuntos
Cloreto de Cádmio , Chlorella vulgaris , Estresse Oxidativo , Espermatogênese , Masculino , Animais , Chlorella vulgaris/química , Chlorella vulgaris/efeitos dos fármacos , Cloreto de Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espermatogênese/efeitos dos fármacos , Infertilidade Masculina/induzido quimicamente , Infertilidade Masculina/tratamento farmacológico , Infertilidade Masculina/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Ratos Wistar
2.
Ann Anat ; 250: 152131, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37460043

RESUMO

BACKGROUND: Functional hematopoiesis is governed by the bone marrow (BM) niche, which is compromised by radiotherapy, leading to radiation induced BM failure. The aim of this study was to demonstrate the radiation induced pathological remodeling of the niche and the efficacy of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in restoring hematopoiesis via improvement of the niche. METHODS: Thirty male Wistar rats were equally assigned to three groups: control (CON), irradiated (IR), and IR+hUCB-MSCs. Biochemical, histopathological and immunohistochemical analyses were performed to detect collagen type III and IV, Aquaporin 1+ sinusoidal endothelial cells and immature hematopoietic cells, CD11c+ dendritic cells, Iba1+ macrophages, CD9+ megakaryocytes, Sca-1+, cKit+, CD133 and N-cadherin+ hematopoietic stem and progenitor cells, CD20+, Gr1+ mature hematopoietic cells, in addition to ki67+ proliferation, Bcl-2+ anti-apoptotic, caspase-3+ apoptotic, TNF-α+ inflammatory cells. Histoplanimetry data were statistically analyzed using the one-way analysis of variance followed by the post hoc Duncan's test. Moreover, Pearson's correlation was used to assess the correlation between various parameters. RESULTS: In comparison to the IR group, the IR+hUCB-MSCs group showed restored cell populations and extracellular collagen components of the BM niche with significant increase in hematopoietic stem, progenitor, mature and proliferating cells, and a considerable decrease in apoptotic and inflammatory cells. Furthermore, highly significant correlations between BM niche and blood biochemical, histopathological, and immunohistochemical parameters were observed. CONCLUSION: hUCB-MSCs restored functional hematopoiesis through amelioration of the BM niche components via reduction of oxidative stress, DNA damage, inflammation, and apoptosis with upregulation of cellular proliferation.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Humanos , Ratos , Masculino , Animais , Sangue Fetal , Células Endoteliais , Células-Tronco Mesenquimais/fisiologia , Ratos Wistar , Hematopoese/fisiologia , Células da Medula Óssea/fisiologia , Cordão Umbilical
3.
Acta Histochem ; 121(1): 84-93, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30413282

RESUMO

Testicular impairment is a common complication of Diabetes mellitus (DM). Zinc Oxide Nanoparticles (ZnO NPs) are a novel agent for Zn delivery with antidiabetic and antioxidant activities. However, few reports were recorded on it. The current study aimed to investigate the possible ameliorating effect of ZnO NPs treatment on testicular tissues alterations in streptozotocin (STZ)-induced diabetic rats. Therefore, thirty mature male Wistar rats were divided into three main groups: Control group (n = 18) was subdivided equally into three subgroups (negative control, vehicle and ZnO NPs), Diabetic group (n = 6) and ZnO NPs-treated diabetic group (n = 6). Induction of diabetes was done by a single intraperitoneal injection of STZ (60 mg/kg bw). The rats were orally treated by ZnO NPs (10 mg/kg bw) for 30 constitutive days. At the end of the experiment, blood glucose and serum testosterone levels were measured. Also, testicular tissues were obtained for histopathological investigations and immunohistochemical staining with anti-PCNA (proliferating cell marker), anti-ssDNA (apoptotic cell marker), anti-SOX9 (Sertoli cell marker), anti-Stella (spermatogonia marker), anti-STRA8 (preleptotene and early-leptotene spermatocytes marker), anti-DMC1 (leptotene and zygotene spermatocytes marker), anti-Dnmt3a (a marker for cells under DNA methylation) and anti-α-SMA (peritubular myoid cell marker). The biochemical analysis revealed that diabetes resulted in a significant elevation in blood glucose level and a reduction in serum testosterone level. Moreover, histopathological investigations revealed disorganized seminiferous epithelium and sever hyalinization with vacuolization of the testicular interstitium containing Leydig cells. The immunohistochemical findings support spermatogenesis impairment in the diabetic group. However, ZnO NPs treatment restores architecture of seminiferous epithelium and Leydig cells. Furthermore, more PCNA, SOX9, Stella, STRA8, DMC1 and Dnmt3a immunopositive cells with an improvement of peritubular α-SMA immunopositive expression, as well as few ssDNA-immunopositive cells were detected in the seminiferous epithelium. This study suggested the possible protective role of orally administered ZnO NPs on testicular alterations in the STZ-induced diabetic group via steroidogenesis and spermatogenesis enhancement. In addition, further researches are acquired for evaluation mechanism of ZnO NPs treatment via oral or parenteral routes in a dose-dependent manner to identify the more effective route and dose in the treatment of testicular diabetic complications.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Diabetes Mellitus Experimental , Nanopartículas/uso terapêutico , Testículo/lesões , Óxido de Zinco/uso terapêutico , Animais , Biomarcadores/metabolismo , Peso Corporal , Proteínas de Ciclo Celular/metabolismo , Linhagem da Célula/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Masculino , Ratos , Padrões de Referência , Espermatogênese/efeitos dos fármacos , Espermatogônias/efeitos dos fármacos , Estreptozocina/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa