Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Phytoremediation ; : 1-17, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011840

RESUMO

This work reports new findings on the preparation of hydrochar from date palm (Phoenix dactylifera) seeds through the application of the microwave hydrothermal carbonization (HTC) method. Optimization investigations involving temperatures and reaction times were conducted to establish the highest yield, achieving a maximum yield of 60.87%. The prepared material was then impregnated in phosphoric acid and carbonized in the tube furnace at 550 °C for 1.5 h with a nitrogen flow of 50 CCM. The samples were characterized via scanning electron microscopy (SEM), Brunauer-Emmet-Teller (BET) and Fourier transform infrared (FTIR). The samples showed remarkable BET surface areas following activation, reaching up to 992 m2·g-1. The substance was subsequently used to absorb methylene blue with good fitting to the Freundlich and Redlich-Peterson isotherm and achieved a peak adsorption capacity of 196.6 ± 3.9 mg·g-1.


This study involves the preparation of hydrochar through microwave-assisted hydrothermal carbonization (HTC) of date palm seeds. It explores the impact of different process parameters, such as power, reaction temperatures, and timing on the mass yield and BET surface area of the hydrochars. Additionally, the prepared material undergoes chemical activation with phosphoric acid, and its efficacy in extracting methylene blue (MB) from an aqueous solution is assessed. This research is particularly novel as it represents the first comprehensive investigation into the use of microwave-derived and phosphoric acid-activated hydrochar for MB extraction.

2.
Molecules ; 25(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33152997

RESUMO

Deep eutectic solvents (DESs) are green solvents developed as an alternative to conventional organic solvents and ionic liquids to extract nitrogen compounds from fuel oil. DESs based on p-toluenesulfonic acid (PTSA) are a new solvent class still under investigation for extraction/separation. This study investigated a new DES formed from a combination of tetrabutylphosphonium bromide (TBPBr) and PTSA at a 1:1 molar ratio. Two sets of ternary liquid-liquid equilibrium experiments were performed with different feed concentrations of nitrogen compounds ranging up to 20 mol% in gasoline and diesel model fuel oils. More than 99% of quinoline was extracted from heptane and pentadecane using the DES, leaving the minutest amount of the contaminant. Selectivity was up to 11,000 for the heptane system and up to 24,000 for the pentadecane system at room temperature. The raffinate phase's proton nuclear magnetic resonance (1H-NMR) spectroscopy and GC analysis identified a significantly small amount of quinoline. The selectivity toward quinoline was significantly high at low solute concentrations. The root-mean-square deviation between experimental data and the non-random two-liquid (NRTL) model was 1.12% and 0.31% with heptane and pentadecane, respectively. The results showed that the TBPBr/PTSADES is considerably efficient in eliminating nitrogen compounds from fuel oil.


Assuntos
Benzenossulfonatos/química , Gasolina , Modelos Químicos , Líquidos Iônicos/química , Solventes/química
3.
Polymers (Basel) ; 16(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257013

RESUMO

In this study, a new epoxidized oil from Citrullus colocynthis seed oil (CCSO) was obtained for a potential application in the formulation of polyurethane coatings. Initially, the fatty acid composition of CCSO was determined by gas chromatography-mass spectrometry (GC-MS). Subsequently, the epoxidation of CCSO was performed with in situ generated peracetic acid, which was formed with hydrogen peroxide (30 wt.%) and glacial acetic acid and catalyzed with sulfuric acid. The reaction was continued at a molar ratio of 1.50:1.0 of hydrogen peroxide to double bond (H2O2:DB) for 6 h at a controlled temperature of 60 °C. The resulting epoxidized oil was then used to produce a bio-based polyol by hydroxylation. The molar ratio of epoxy groups to methanol and distilled water was maintained at 1:11:2, and the reaction was carried out for 2 h at a controlled temperature of 65 °C. The major functional groups of the epoxidized oil and its polyol were validated by Fourier-transform infrared (FT-IR) and proton nuclear magnetic resonance (1H NMR) spectroscopies. A polyurethane (PU) coating was produced from the synthesized polyol and 3HDI isocyanurate, keeping the molar ratio of NCO:OH at 1:1. The resulting PU coating was then applied to glass and aluminum panels (Al 1001). After the film was cured, the properties of the PU coating were evaluated using various techniques including pencil hardness, pendulum hardness, adhesion, gloss, chemical resistance, and EIS tests. The results show that the PU coating obtained from CCSO is a promising new raw material for coating applications.

4.
Materials (Basel) ; 16(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36837301

RESUMO

In this work, carbon microspheres (CMs) were prepared by hydrothermal carbonization (HTC) of inedible crystallized date palm molasses. The effects of temperature and reaction time on the prepared materials were studied. Experiments were carried out at different temperatures (180, 200, 230 and 250 °C) with reaction times ranging from 2 to 10 h. It was found that temperature had the greatest influence on the mass yield of the CMs. No solid products were observed at a temperature of 180 °C and a reaction time less than 2 h. The highest yield was found to be 40.4% at 250 °C and a reaction time of 6 h. The results show that the CMs produced were approximately 5-9 µm in diameter. The results also show that the largest diameter of the CMs (8.9 µm) was obtained at a temperature of 250 °C and a reaction time of 6 h. Nonetheless, if the reaction time was extended beyond 6 h at 250 °C, the CMs fused and their shapes were deformed (non-spherical shapes). The synthesized materials were characterized using Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR), Branuer-Emmett-Teller (BET) and thermogravimetric analysis (TGA). BET surface areas for the four samples were found to be less than 1 m2/g. The methylene blue adsorption studies indicated that the equilibrium adsorption capacity was reached after 15 min, with a maximum adsorption capacity of 12 mg/g. The recycling of date palm molasses (a known processed waste) to generate a useable carbon microsphere represents a beneficial step in the application of sustainable processing industries in the Middle East.

5.
Polymers (Basel) ; 14(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36432924

RESUMO

Valorizing the fatty content of agricultural waste in material synthesis is an interesting topic. This work focused on utilizing oleic acid from the solid waste of olive mills in Saudi Arabia to synthesize biodegradable polyanhydrides based on sebacic acid which terminated with different concentrations of fatty acid (10, 30, 50, and 70 wt%), then characterize the final polymer samples and study the effects of termination on polyanhydrides properties, such as molecular weight and degradation profile. The fatty content of the solid waste was extracted, purified, and analyzed prior to and after separating the saturated and unsaturated fractions by urea crystallization, then the microwave-assisted melt polycondensation technique was used in the synthesis of the final polymers. Molecular weights were determined by gel permeation chromatography (GPC), and the degradation profile of the prepared samples was examined by determining the weight loss percentage of the polymer mass and FT-IR scanning for the anhydride bond before and after sample degradation. Results showed a linear degradation profile for most samples with no significant change in the molecular weights due to termination.

6.
ACS Omega ; 6(34): 22317-22332, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34497921

RESUMO

Removal of nitrogen and sulfur compounds from diesel fuel is essential to comply with the increasing stringent regulations. The extraction capability of two deep eutectic solvents, namely, tetrabutylphosphoniumbromide/ethylene glycol, TBPBr/EG, with molar ratio 1:2, and tetrabutylammoniumbromide/ethylene glycol, TBABr/EG, with molar ratio 1:2, in simultaneously extracting basic nitrogen, nonbasic nitrogen, and sulfur compounds represented by pyridine, indoline, and dibenzothiophene (DBT) from n-hexadecane, was investigated. Two pseudo-ternary phase diagrams of (TBPBr/EG + (pyridine + indoline + DBT) + n-hexadecane) and (TBABr/EG + (pyridine + indoline + DBT) + n-hexadecane) were predicted via a conductor-like screening model for real solvents (COSMO-RS) and experimentally validated at 298.15 K and 1 atm. Both solvents showed zero cross-contamination, indicating the suitability of all solvents as extraction solvents. The tie lines obtained for both COSMO-RS and experiments were in agreement and had root-mean-square deviation (RMSD) values of less than 5% for both systems. Selectivity and distribution ratio calculated indicates the suitability of both solvents in extracting sulfur and nitrogen compounds from hexadecane. Two new parameters, namely, extraction efficiency, α, and extraction affinity, ß, were introduced to ease the performance comparison of both solvents. TBPBr/EG shows a slightly better performance than TBABr/EG. Other than that, the presence of multiple solutes shows low effects on the performance of these solvents.

7.
Org Biomol Chem ; 8(18): 4165-8, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20661510

RESUMO

Chemoenzymatic dynamic kinetic resolution (DKR) of amines involving sulfanyl radical-induced racemization happened to be the very first switchable DKR process allowing the synthesis of either (R)- or (S)-amides, in good yield and high enantiomeric excess, depending on the nature of the enzyme; the different steps of the development of (S)-selective DKR are discussed.


Assuntos
Amidas/síntese química , Aminas/química , Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , Compostos de Sulfidrila/química , Amidas/química , Proteínas de Bactérias/química , Biocatálise , Endopeptidases/química , Radicais Livres/química , Cinética , Nitrilas/química , Estereoisomerismo
8.
PLoS One ; 15(2): e0229780, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32084253

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0224807.].

9.
J Org Chem ; 74(7): 2901-3, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19323578

RESUMO

A one-pot sequential process, involving a radical racemization and an enzymatic resolution, provides access to (S)-amides, from racemic amines, with ee and yields ranging from 78 to 94% and 58 to 80%, respectively.

10.
PLoS One ; 14(11): e0224807, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31725738

RESUMO

Two novel and highly accurate hybrid models were developed for the prediction of the flammability limits (lower flammability limit (LFL) and upper flammability limit (UFL)) of pure compounds using a quantitative structure-property relationship approach. The two models were developed using a dataset obtained from the DIPPR Project 801 database, which comprises 1057 and 515 literature data for the LFL and UFL, respectively. Multiple linear regression (MLR), logarithmic, and polynomial models were used to develop the models according to an algorithm and code written using the MATLAB software. The results indicated that the proposed models were capable of predicting LFL and UFL values with accuracies that were among the best (i.e. most optimised) reported in the literature (LFL: R2 = 99.72%, with an average absolute relative deviation (AARD) of 0.8%; UFL: R2 = 99.64%, with an AARD of 1.41%). These hybrid models are unique in that they were developed using a modified mathematical technique combined three conventional methods. These models afford good practicability and can be used as cost-effective alternatives to experimental measurements of LFL and UFL values for a wide range of pure compounds.


Assuntos
Incêndios , Modelos Químicos , Algoritmos , Bases de Dados de Compostos Químicos , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes
11.
Org Biomol Chem ; 6(21): 3917-20, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18931797

RESUMO

Enzymatic kinetic resolution of aliphatic and benzylic amines leading to (S)-amides was achieved by using alkaline protease as the catalyst and N-octanoyl glycine trifluoroethyl ester as the acyl donor; enantioselectivity ranged between 4 to 244, while reaction times were dramatically shortened and ranged between 15 min to 6 h.


Assuntos
Aminas/metabolismo , Biocatálise , Glicina/análogos & derivados , Glicina/metabolismo , Serina Endopeptidases/metabolismo , Ésteres/química , Cinética , Serina Endopeptidases/química , Estereoisomerismo , Especificidade por Substrato , Temperatura
12.
J Org Chem ; 69(26): 9310-2, 2004 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-15609974

RESUMO

Dihydroxyacetone phosphate (DHAP) was synthesized in high purity and yield in four steps starting from dihydroxyacetone dimer (DHA) (47% overall yield). DHA was converted into 2,2-dimethoxypropane-1,3-diol, which was desymmetrized by acetylation with lipase AK. The alcohol function was phosphorylated to give dibenzyl phosphate ester 4. From 4, two routes were investigated for large-scale synthesis of DHAP. First, acetate hydrolysis was performed prior to hydrogenolysis of the phosphate protective groups. The acetal hydrolysis was finally catalyzed by the phosphate group itself. Second, acetate and acetal hydrolysis were performed in one single step after hydrogenolysis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa