Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cell Rev Rep ; 20(5): 1353-1356, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38492134

RESUMO

Addressing the challenges in managing ischemic tissue repair and remodelling remains a prominent clinical concern. Current research is heavily concentrated on identifying innovative cell-based therapies with the potential to enhance revascularization in patients affected by these diseases. We have previously developed and validated a manufacturing process for human umbilical cord mesenchymal stromal cells (UC-MSCs)-based cell therapy medicinal product, according to Good Manufacturing Practices. In this study, we demonstrate that these UC-MSCs enhance the proliferation and migration of endothelial cells and the formation of capillary structures. Moreover, UC-MSCs and endothelial cells interact, allowing UC-MSCs to acquire a perivascular cell phenotype and consequently provide direct support to the newly formed vascular network. This characterization of the proangiogenic properties of this UC-MSCs based-cell therapy medicinal product is an essential step for its therapeutic assessment in the clinical context of vascular regeneration.


Assuntos
Proliferação de Células , Células-Tronco Mesenquimais , Neovascularização Fisiológica , Cordão Umbilical , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/citologia , Movimento Celular , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Cultivadas , Diferenciação Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo
2.
Stem Cell Res Ther ; 15(1): 225, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075518

RESUMO

BACKGROUND: This study explores the potential role of Thioredoxin-interacting protein (TXNIP) silencing in endothelial colony-forming cells (ECFCs) within the scope of age-related comorbidities and impaired vascular repair. We aim to elucidate the effects of TXNIP silencing on vasculogenic properties, paracrine secretion, and neutrophil recruitment under conditions of metabolic stress. METHODS: ECFCs, isolated from human blood cord, were transfected with TXNIP siRNA and exposed to a high glucose and ß-hydroxybutyrate (BHB) medium to simulate metabolic stress. We evaluated the effects of TXNIP silencing on ECFCs' functional and secretory responses under these conditions. Assessments included analyses of gene and protein expression profiles, vasculogenic properties, cytokine secretion and neutrophil recruitment both in vitro and in vivo. The in vivo effects were examined using a murine model of hindlimb ischemia to observe the physiological relevance of TXNIP modulation under metabolic disorders. RESULTS: TXNIP silencing did not mitigate the adverse effects on cell recruitment, vasculogenic properties, or senescence induced by metabolic stress in ECFCs. However, it significantly reduced IL-8 secretion and consequent neutrophil recruitment under these conditions. In a mouse model of hindlimb ischemia, endothelial deletion of TXNIP reduced MIP-2 secretion and prevented increased neutrophil recruitment induced by age-related comorbidities. CONCLUSIONS: Our findings suggest that targeting TXNIP in ECFCs may alleviate ischemic complications exacerbated by metabolic stress, offering potential clinical benefits for patients suffering from age-related comorbidities.


Assuntos
Proteínas de Transporte , Interleucina-8 , Infiltração de Neutrófilos , Estresse Fisiológico , Animais , Interleucina-8/metabolismo , Interleucina-8/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Humanos , Camundongos , Infiltração de Neutrófilos/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/efeitos dos fármacos , Isquemia/metabolismo , Isquemia/patologia , RNA Interferente Pequeno/metabolismo , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Membro Posterior/irrigação sanguínea , Camundongos Endogâmicos C57BL , Glucose/metabolismo
3.
J Thromb Haemost ; 21(7): 1943-1956, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36990159

RESUMO

BACKGROUND: The circulating form of human endoglin (sEng) is a cleavage product of membrane-bound endoglin present on endothelial cells. Because sEng encompasses an RGD motif involved in integrin binding, we hypothesized that sEng would be able to bind integrin αIIbß3, thereby compromising platelet binding to fibrinogen and thrombus stability. METHODS: In vitro human platelet aggregation, thrombus retraction, and secretion-competition assays were performed in the presence of sEng. Surface plasmon resonance (SPR) binding and computational (docking) analyses were carried out to evaluate protein-protein interactions. A transgenic mouse overexpressing human sEng (hsEng+) was used to measure bleeding/rebleeding, prothrombin time (PT), blood stream, and embolus formation after FeCl3-induced injury of the carotid artery. RESULTS: Under flow conditions, supplementation of human whole blood with sEng led to a smaller thrombus size. sEng inhibited platelet aggregation and thrombus retraction, interfering with fibrinogen binding, but did not affect platelet activation. SPR binding studies demonstrated that the specific interaction between αIIbß3 and sEng and molecular modeling showed a good fitting between αIIbß3 and sEng structures involving the endoglin RGD motif, suggesting the possible formation of a highly stable αIIbß3/sEng. hsEng+ mice showed increased bleeding time and number of rebleedings compared to wild-type mice. No differences in PT were denoted between genotypes. After FeCl3 injury, the number of released emboli in hsEng+ mice was higher and the occlusion was slower compared to controls. CONCLUSIONS: Our results demonstrate that sEng interferes with thrombus formation and stabilization, likely via its binding to platelet αIIbß3, suggesting its involvement in primary hemostasis control.


Assuntos
Agregação Plaquetária , Trombose , Humanos , Animais , Camundongos , Agregação Plaquetária/fisiologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Endoglina/metabolismo , Células Endoteliais/metabolismo , Plaquetas/metabolismo , Fibrinogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa