Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049835

RESUMO

Tailoring high-efficiency photocatalytic composites for various implementations is a major research topic. 1D TNTs-based nanomaterials show promise as a photocatalyst for the remediation of organic pigments in an aqueous solution. Despite this, TiO2 (TNTs) is only photoactive in the UV range due to its inherent restriction on absorption of light in the UV range. Herein, we provide a facile recipe to tailor the optical characteristics and photocatalytic activity of TNTs by incorporating Zn (II) ionic species via an ion-exchange approach in an aqueous solution. The inclusion of Zn (II) ions into the TNTs framework expands its absorption of light toward the visible light range, therefore TiO2 nanotubes shows the visible-light photo-performance. Activity performance on photocatalytic decontamination of RhB at ambient temperature demonstrates that Zn-TNTs offer considerable boosted catalytic performance compared with untreated tubular TiO2 during the illumination of visible light. RhB (10 mg L-1) degradation of around 95% was achieved at 120 min. Radical scavenger experiment demonstrated that when electron (e-) or holes (h+) scavengers are introduced to the photodegradation process, the assessment of decontamination efficacy decreased by 45% and 76%, respectively. This demonstrates a more efficient engagement of the photoexcited electrons over photogenerated holes in the photodegradation mechanism. Furthermore, there seems to be no significant decrease in the activity of the Zn-TNTs after five consecutive runs. As a result, the fabricated Zn-TNTs composite has a high economic potential in the energy and environmental domains.

2.
Molecules ; 27(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500510

RESUMO

Methylene blue (MB) immobilized onto a sulfonated poly(glycidyl methacrylate) (SPGMA) polymer composite has been developed as a novel adsorbent for water treatment applications. The MB adsorptions onto sulfonated poly(glycidyl methacrylate) polymer characters have been studied. The adsorption isotherms, namely Langmuir and Freundlich, have been investigated. Other isotherm models. As a compromise between the Freundlich and Langmuir isotherm models, such as the D-R isotherm and the Temkin isotherm, have been compared. The results indicated that the adsorption process followed the Freundlich isotherm model, indicating heterogeneous surface site energies and multi-layer levels of sorption. This study selected three linear kinetic models, namely pseudo-first order, pseudo-second order, and Elovich, to describe the MB sorption process using SPGMA negatively charged nanoparticles (430 nm). The obtained data revealed that the adsorption process obeyed the pseudo-second-order kinetic model, suggesting that the rate-limiting step in these sorption processes may be chemisorption. Furthermore, the thermodynamic parameters have been evaluated. Moreover, the interaction of the MB molecules with SPGMA nanoparticles has been simulated using the governing equation that describes ion exchange resin derived from Nernst-Plank equations between two ion species. Finally, the developed MB-SPGMA composite adsorbent (27 mg/g) wastested for the first time for the removal of Cr6+ ions and Mn7+ metal ions from dichromate and permanganate-contaminated waters under mild adsorption conditions, opening a new field of multiuse of the same adsorbent in the removal of more than one contaminant.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Azul de Metileno , Compostos Azo , Polímeros , Concentração de Íons de Hidrogênio , Purificação da Água/métodos , Cinética , Adsorção , Termodinâmica , Alcanossulfonatos
3.
Molecules ; 27(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36364462

RESUMO

The arsenic (As) pollution of water has been eliminated via intensive scientific efforts, with the purpose of giving safe drinking water to millions of people across the world. In this study, the adsorption of As(V) from a synthetic aqueous solution was verified using a Bentonite-Anthracite@Zetag (BT-An@Zetag) composite. The SEM, FT-IR, XRD, DSC, TGA, and SBET techniques were used to characterize the (BT-An@Zetag) composite. The adsorption of As(V) was explored using batch adsorption under varied operating scenarios. Five kinetic modelswere used to investigate kinetic data, whereas three isotherms had been used to fit empirical equilibrium data. According to the findings, the adsorption mechanism of As(V) was best described by the Freundlich isotherm with a maximum monolayer coverage of 38.6 mg/g showing pseudo-second-order mode. The estimated enthalpy (H°) indicates that the adsorption process is both chemical and endothermic.The calculated free energy (G°) indicates that the reaction is nonspontaneous. After four sequential adsorption cycles, the produced BT-An@Zetag composite demonstrated good reusability and a greater adsorption affinity for As(V) ions. Overall, the BT-An@Zetag composite is suited for removing arsenic from wastewater using adsorption as a cost-effective and efficient technique.


Assuntos
Arsênio , Quitosana , Poluentes Químicos da Água , Humanos , Bentonita/química , Carvão Mineral , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/química , Quitosana/química , Adsorção , Água/química , Cinética , Termodinâmica , Concentração de Íons de Hidrogênio
4.
ACS Omega ; 9(11): 13086-13099, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524478

RESUMO

Addressing industrial wastewater treatment challenges and removing hazardous organic pollutants, such as carcinogenic methyl orange (MO) and azo dyes, is a pressing concern. This study explores the use of the Zea mays envelope, an agricultural waste product, to produce Z. mays activated carbon (ZMAC) through the chemical activation of maize envelopes with phosphoric acid. Various analytical techniques, including FTIR, XRD, TGA, DSC, and SEM, characterize ZMAC. Results show that ZMAC exhibits an impressive monolayer adsorption capacity of 66.2 mg/g for MO. The Langmuir isotherm model fits the experimental data well, indicating monolayer coverage of the MO on the ZMAC surface. The pH-sensitive adsorption process demonstrates an optimal removal efficiency at pH 4. ZMAC follows the pseudo-second-order kinetic model, and diffusion rate constant analysis identifies three consecutive stages in the adsorption process. Moreover, the uptake of MO ions by ZMAC is identified as an exothermic and spontaneous process. Reusability tests demonstrate efficient regeneration of ZMAC up to five times with 1 mL of 2 M HNO3 in each cycle, without sorbent mass loss. Thermodynamic analysis shows an increase in the uptake capacity from 66.2 to 73.2 mg/g with temperature elevation. This study offers practical solutions for industrial wastewater treatment challenges, providing an environmentally sustainable and effective approach to mitigate the risks associated with hazardous organic pollutants.

5.
Int J Biol Macromol ; 270(Pt 2): 132252, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729503

RESUMO

In this study, we developed a novel nanocomposite by synthesizing zinc (ZnNPs), copper (CuNPs), and silver (AgNPs) nanoparticles using olive leaf extract and incorporating them into a chitosan polymer. This approach combines the biocompatibility of chitosan with the antimicrobial and anticancer properties of metal nanoparticles, enhanced by the phytochemical richness of olive leaf extract. The significance of our research lies in its potential to offer a biodegradable and stable alternative to conventional antibiotics and cancer treatments, particularly in combating multidrug-resistant bacteria and various cancer types. Comprehensive characterization through Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), and Transmission Electron Microscopy (TEM) confirmed the successful synthesis of the nanocomposites, with an average size of ~22.6 nm. Phytochemical analysis highlighted the antioxidant-rich composition of both the olive leaf extract and the nanoparticles themselves. Functionally, the synthesized nanoparticles exhibited potent antimicrobial activity against multidrug-resistant bacterial strains, outperforming traditional antibiotics by inhibiting key resistance genes (ermC, tetX3-q, blaZ, and Ery-msrA). In anticancer assessments, the nanoparticles showed selective cytotoxicity towards cancer cells in a concentration-dependent manner, with CuNPs and AgNPs showing particularly strong anticancer effects, while demonstrating minimal toxicity towards normal cells. ZnNPs were noted for their low cytotoxicity, highlighting the safety profile of these nanoparticles. Further, the nanoparticles induced apoptosis in cancer cells, as evidenced by the modulation of oncogenes (P21, P53, and BCL2), suggesting their therapeutic potential. The findings of our study underscore the versatile applications of these biogenic nanoparticles in developing safer and more effective antimicrobial and anticancer therapies.


Assuntos
Antineoplásicos , Quitosana , Química Verde , Nanopartículas Metálicas , Nanocompostos , Olea , Extratos Vegetais , Folhas de Planta , Quitosana/química , Quitosana/farmacologia , Nanocompostos/química , Olea/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Humanos , Folhas de Planta/química , Nanopartículas Metálicas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Prata/química , Prata/farmacologia , Linhagem Celular Tumoral
6.
Nanomaterials (Basel) ; 13(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36839153

RESUMO

p-nitrophenol (pNP) is a highly toxic organic compound and is considered carcinogenic and mutagenic. It is a very stable compound with high resistance to chemical or biological degradation. As a result, the elimination of this pollutant has been very challenging for many researchers. Catalytic reduction is one of the most promising techniques, if a suitable catalyst is developed. Thus, this work aims to prepare an eco-friendly catalyst via a simple and low-cost route and apply it for the conversion of the toxic p-nitrophenol (pNP) into a non-toxic p-aminophenol (pAP) that is widely used in industry. Manganese oxide was prepared in an environmentally friendly manner with the aid of Lawsonia inermis (henna) extract as a stabilizing and capping agent and loaded on the surface of 13X molecular sieve zeolite. The UV-Vis spectrum, EDS, and XRD patterns confirmed the formation of the pure MnO2 loaded on the zeolite crystalline network. The TGA analysis showed that the samples prepared by loading MnO2 on zeolite (Mn2Z, Mn3Z, and Mn4Z) lost more mass than pure MnO2 (Mn) or zeolite (Z), which is mainly moisture adsorbed on the surface. This indicates a better dispersion of MnO2 on the surface of zeolite compared to pure MnO2, and thus a higher number of active adsorption sites. SEM images and EDS confirmed the dispersion of the MnO2 on the surface of the zeolite. Results showed a very fast reduction rate, following the order Mn2Z > Mn3Z > Mn4Z > Mn > Z. With sample Mn2Z, 96% reduction of pNP was achieved in 9 min and 100% in 30 min. For Mn3Z, Mn4Z, and Mn, 98% reduction was achieved in 20 min and 100% in 30 min. Zeolite was the slowest, with only a 40% reduction in 30 min. Increasing the amount of zeolite in the synthesis mixture resulted in lower reduction efficiency. The kinetic study indicated that the reduction of p-nitrophenol on the surface of the prepared nanocomposite follows the pseudo-first-order model. The results show that the proposed nanocomposite is very effective and very promising to be commercially applied in water treatment, due to its low cost, simple synthesis procedure, and reusability.

7.
Polymers (Basel) ; 15(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37514455

RESUMO

This research paper aims to fabricate flexible PVA/Cs/TiO2 nanocomposite films consisting of polyvinyl alcohol (PVA), chitosan (Cs), and titanium oxide (TiO2) for application in energy storage devices. The samples were analyzed using X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and energy dispersive X-ray (EDX) techniques. The impact of TiO2 on the electrical impedance, conductivity, permittivity, and energy efficiency of the PVA/Cs was determined in a frequency range of 100 Hz to 5 GHz. The XRD, FTIR, and EDX results showed the successful fabrications of the PVA/Cs/TiO2. The SEM and AFM images illustrated that the TiO2 was loaded and distributed homogenously in PVA/Cs chains. In addition, the electrical conductivity was enhanced from 0.04 × 10-7 S.cm-1 of PVA/Cs to 0.25 × 10-7 S.cm-1 and 5.75 × 10-7 S.cm-1, respectively, for the composite PVA/Cs/0.01TiO2 and PVA/Cs/0.1TiO2, and the dielectric constant grew from 2.46 for PVA/Cs to 7.38 and 11.93, respectively. These results revealed that modifications were made to the produced films, paving the way for using the composite PVA/Cs/TiO2 films in different energy applications, such as electronic circuits and supercapacitors.

8.
ACS Omega ; 7(31): 27239-27248, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35967052

RESUMO

Water polluted by phenolic compounds is a global threat to health and the environment; accordingly, we prepared a green novel sorbent biological system from a chitosan (CS), gelatin (GT), and Chlorella vulgaris freshwater microalgae (m-Alg) composite impregnated with zinc oxide nanoparticles (ZnO-NPs) for the remediation of bisphenol-A (BPA) from water. C. vulgaris was selected to be one of the constituents of the prepared composite because of its high capability in phytoremediation. The morphology and the structure of CS/GT*m-Alg/ZnO beads were characterized by SEM, FTIR, XRD, and TGA. Different monitoring experimental conditions, such as contact time, pH, BPA concentration, and sorbent dosage, were optimized. The optimum conditions for the adsorption process showed outstanding removal efficiency toward BPA at pH 4.0, contact time 40.0 min, and 40.0 mg L-1 BPA initial concentration. Langmuir, Freundlich, and Temkin isotherm models have been studied for adsorption equilibrium, and the best fit is described by the Langmuir adsorption isotherm. The adsorption kinetics has been studied using pseudo-first-order (PFO), pseudo-second-order (PSO), Elovich, and intraparticle diffusion (IPD) models. The pseudo-second-order kinetic model shows the optimum experimental fit. The monolayer adsorption capacity of the prepared CS/GT*m-Alg/ZnO for BPA was determined to be 38.24 mg g-1. The prepared CS/GT*m-Alg/ZnO beads show advantageous properties, such as their high surface area, high adsorption capacity, reusability, and cost-effectiveness.

9.
ACS Appl Bio Mater ; 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36040424

RESUMO

We synthesized a stable, eco-friendly, and low-cost polyaniline@ß-cyclodextrin (PANI@ß-CD) nanocomposite via oxidative polymerization for phenol adsorption from water waste since phenol pollution is a global danger to human and animal health and the environment. The production of the composite and synergistic alteration of PANI with ß-CD resulted in 66% reduction in particle size from 59 nm (PANI) to 20 nm (PANI@ß-CD) as well as better phenol adsorption. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), and thermogravimetric analysis (TGA) were used to analyze the produced PANI@ß-CD nanocomposite. Our results show the optimum conditions for phenol adsorption: time (50 min), pH (8.0), nanosorbent dose (0.5 g), and the sorption isotherm fitted with Langmuir model; the monolayer adsorption capacity of the prepared PANI@ß-CD for phenol was determined to be 8.56 mg g-1. The average pore size, total pore volume, and surface area of PANI/ßCD nanocomposite are 15.62 nm, 0.1586 cm3/g, and 90.901 m2/g, respectively, for the pseudo second order model. Finally, modifying PANI nanoparticles with ßCD allowed reusability up to four cycles with superior adsorption performance of ∼95% using (0.01 N) HNO3.

10.
Polymers (Basel) ; 14(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36365665

RESUMO

Methylene blue azo dye (MB) immobilized onto Poly (glycidyl methacrylate-Co-methyl methacrylate), (PGMA-co-PMMA), and sulphonated Poly (glycidyl methacrylate-Co-methyl methacrylate), (SPGMA-co-PMMA), polymers composites have been developed as novel adsorbents for water treatment applications. The effect of copolymer composition and sulphonation on the MB content has been studied. Maximum MB content was correlated to the Polyglycidyl methacrylate content for both native and sulphonated copolymers. Furthermore, the effect of the adsorption conditions on the MB content was studied. Sulfonated Poly (glycidyl methacrylate; SPGMA) was the most efficient formed composite with the highest MB content. The developed composites' chemical structure and morphology were characterized using characterization tools such as particle size, FTIR, TGA, and SEM analyses. The developed MB-SPGMA composite adsorbent (27 mg/g), for the first time, was tested for the removal of Cr (VI) ions and Mn (VII) metal ions from dichromate and permanganate contaminated waters under mild adsorption conditions, opening a new field of multiuse of the same adsorbent in the removal of more than one contaminants.

11.
J Cardiovasc Dev Dis ; 9(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36547425

RESUMO

Dietary cholesterol accelerates oxidative and pro-inflammatory processes, causing hypercholesterolemia and cardiovascular diseases. Thus, the purpose of the current study is to compare the protective effects of thymoquinone (TQ) alone or in combination with losartan (LT) against the heart damage caused by a high-cholesterol diet (HCD). HCD-fed rat groups revealed an elevated activity of indicators of cardiac enzymes in the serum. Serum and cardiac lipids were also found to be significantly higher in HCD-fed rat groups. Cardiac pro-inflammatory and oxidative markers were also increased in HCD-fed rat groups, whereas antioxidant indicators were decreased. However, all of these biochemical, inflammatory, antioxidant, and oxidative change indicators returned to levels similar to those of normal rats after treatment with TQ alone or in combination with LT administered to HCD-fed rat groups. Hypercholesterolemia considerably induced the lipid peroxidation product, thiobarbituric acid reaction substances (TBARs), and oxidative radicals in cardiac cells, which were attenuated by QT and LT treatments, particularly when combined. Finally, QT, LT, and their combination were able to reduce the histological changes changes brought on by cholesterol excess in cardiac tissues. In conclusion, administration of TQ in a combination with LT which has a better protective effect, significantly reduced the hypercholesterolemic-induced oxidative and inflammatory changes that occurred in cardiac tissue.

12.
Int J Biol Macromol ; 167: 1552-1563, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33212109

RESUMO

An innovative approach in the functionalization of nanofibers (NFs) for wound healing relies on non-antibiotic combinational therapy to subdue microbial invasion while reducing antimicrobial resistance and enhancing healing. Despite great potentials, wound healing efficacy of NFs embedding antimicrobial metal nanoparticles (NPs)/essential oils has been scarcely documented. We developed combinational NFs using an electrospinnable hyaluronic acid/polyvinyl alcohol/polyethylene oxide blend embedding a new ZnO NPs/cinnamon essential oil (CEO) antimicrobial combination. Fourier transform infrared, X-ray diffraction and transmission electron microscopy confirmed the presence of HA and distribution of ZnO NPs and CEO within NFs. Results for mean diameter, thermal stability, hydrophilicity, tensile strength, in vitro biodegradability, and cytocompatibility of crosslinked combinational NFs were intermediate between those of their singly loaded counterparts. All NFs inhibited the growth of Staphylococcus aureus (S. aureus). Compared with singly loaded NFs, combinational NFs showed the greatest healing efficacy of full thickness S. aureus inoculated incision wounds in rats in terms of bacterial inhibition following a single application, healing speed, and quality of skin structure recovery as verified by morphological, microbiological, and histopathological studies. Results highlighted the potentials of metal NPs/essential oil functionalization of nanofibrous wound dressings as an emerging antibiotic-free combinational approach for more effective and safer wound healing.


Assuntos
Anti-Infecciosos/farmacologia , Ácido Hialurônico/farmacologia , Nanofibras/química , Óleos Voláteis/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Bandagens , Cinnamomum zeylanicum/química , Reagentes de Ligações Cruzadas/química , Temperatura Alta , Interações Hidrofóbicas e Hidrofílicas , Masculino , Teste de Materiais , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Nanofibras/toxicidade , Nanofibras/ultraestrutura , Tamanho da Partícula , Polietilenoglicóis/química , Álcool de Polivinil/química , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Resistência à Tração , Difração de Raios X , Óxido de Zinco/química
13.
Colloids Surf B Biointerfaces ; 183: 110444, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31446323

RESUMO

The objective of this study was to evaluate the anticancer activity on cancer cell models of a drug delivery system consisting of poly (l-lactic) acid/Pluronic® F-127 (PLLA/PF127) loaded with the new N-butylpyridoquinoxaline 1,4-dioxide (NBPQD) or 2-amino-3-cyano-6-methylquinoxaline 1,4-dioxide (ACMQD) that was synthesized using an electrospinning process compared to free NBPQD and ACMQD. PLLA/PF127-NBPQD and PLLA/PF127-ACMQD nanofibers were prepared, and their shape, size, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric (TGA) analysis, water contact angel (WCA), drug release, anticancer activity against five human cancer cell lines, and flowcytometeric analyses of cell cycle, p21 and p53 activities were investigated. PLLA/PF127 nanofibers with NBPQD or ACMQD were smooth, and no NBPQD or ACMQD clusters were found on nanofibers surface. FTIR analysis indicated that intermolecular hydrogen bonding between NBPQD or ACMQD and the polymer matrix is present. PLLA/PF127 nanofibers with NBPQD or ACMQD showed quite stable thermal stability with degradation at about 400 °C, and showed high WCA values of 68.72 ± 3.83° and 110.59 ± 0.21°, respectively. They showed higher in vitro anticancer activity towards all investigated cell lines compared to free NBPQD or free ACMQD. The lowest IC50 value for PLLA/PF127-NBPQD was 1.7 µg/ml with colorectal carcinoma (HCT-116) and was 4.5 µg/ml for PLLA/PF127-ACMQD with hepatocellular carcinoma (HepG2). PLLA/PF127 nanofibers with NBPQD or ACMQD increased anticancer efficiency via inducing cancer cell apoptosis through activation of a p53 and p21 apoptotic-signaling pathway.


Assuntos
Apoptose/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Nanofibras/química , Quinoxalinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células HCT116 , Células HeLa , Células Hep G2 , Humanos , Ácido Láctico/química , Células MCF-7 , Células PC-3 , Poloxâmero/análogos & derivados , Poloxâmero/química , Polímeros/química , Quinoxalinas/química , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Polymers (Basel) ; 8(5)2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-30979268

RESUMO

Acrylonitrile-Styrene co-polymer was prepared by solution polymerization and fabricated into nanofibers using the electrospinning technique. The nanofiber polarization was enhanced through its surface functionalization with carboxylic acid groups by simple chemical modification. The carboxylic groups' presence was dedicated using the FT-IR technique. SEM showed that the nanofiber attains a uniform and porous structure. The equilibrium and kinetic behaviors of basic violet 14 dye sorption onto the nanofibers were examined. Both Langmuir and Temkin models are capable of expressing the dye sorption process at equilibrium. The intraparticle diffusion and Boyd kinetic models specified that the intraparticle diffusion step was the main decolorization rate controlling the process.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa