Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomol Concepts ; 12(1): 175-196, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35041305

RESUMO

The main objective of the current study was to improve the essential oil contents of Thymus vulgaris L. using bio-inoculation with bacterial endophytes. Therefore, out of fourteen endophytic bacterial isolates obtained from roots of T. vulgaris, five isolates were selected based on the highest nitrogen-fixation and phosphate solubilization activity and identified as: Bacillus haynesii T9r, Citrobacter farmeri T10r, Bacillus licheniformis T11r, Bacillus velezensis T12r, and Bacillus velezensis T13r. These five strains have been recorded as ammonia, hydrogen cyanide (HCN), siderophores, and indole-3-acetic acid (IAA) producers. These strains have the efficacy to fix-nitrogen by reduction of acetylene with values of 82.133±1.4-346.6±1.4 n-mole-C2H4/ml/24 h. The IAA, gibberellic acid, abscisic acid, benzyl, kinten, and ziaten production were confirmed using HPLC. Two strains of T11r and T13r showed the highest plant growth-promoting properties and were selected for bio-inoculation of T. vulgaris individually or in a consortium with different mineral fertilization doses (0, 50, 75, and 100%) under field conditions. The highest growth performance was attained with the endophytic consortium (T11r+T13r) in the presence of 100% mineral fertilization. The GC-MS analysis of thyme oil contents showed the presence of 23 various compounds with varying percentages and the thymol fraction represented the highest percentages (39.1%) in the presence of the bacterial consortium.


Assuntos
Óleos Voláteis , Thymus (Planta) , Endófitos , Desenvolvimento Vegetal , Óleos de Plantas , Timol
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa