Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37514736

RESUMO

Continuous monitoring of patients involves collecting and analyzing sensory data from a multitude of sources. To overcome communication overhead, ensure data privacy and security, reduce data loss, and maintain efficient resource usage, the processing and analytics are moved close to where the data are located (e.g., the edge). However, data quality (DQ) can be degraded because of imprecise or malfunctioning sensors, dynamic changes in the environment, transmission failures, or delays. Therefore, it is crucial to keep an eye on data quality and spot problems as quickly as possible, so that they do not mislead clinical judgments and lead to the wrong course of action. In this article, a novel approach called federated data quality profiling (FDQP) is proposed to assess the quality of the data at the edge. FDQP is inspired by federated learning (FL) and serves as a condensed document or a guide for node data quality assurance. The FDQP formal model is developed to capture the quality dimensions specified in the data quality profile (DQP). The proposed approach uses federated feature selection to improve classifier precision and rank features based on criteria such as feature value, outlier percentage, and missing data percentage. Extensive experimentation using a fetal dataset split into different edge nodes and a set of scenarios were carefully chosen to evaluate the proposed FDQP model. The results of the experiments demonstrated that the proposed FDQP approach positively improved the DQ, and thus, impacted the accuracy of the federated patient similarity network (FPSN)-based machine learning models. The proposed data-quality-aware federated PSN architecture leveraging FDQP model with data collected from edge nodes can effectively improve the data quality and accuracy of the federated patient similarity network (FPSN)-based machine learning models. Our profiling algorithm used lightweight profile exchange instead of full data processing at the edge, which resulted in optimal data quality achievement, thus improving efficiency. Overall, FDQP is an effective method for assessing data quality in the edge computing environment, and we believe that the proposed approach can be applied to other scenarios beyond patient monitoring.


Assuntos
Algoritmos , Confiabilidade dos Dados , Humanos , Conscientização , Comunicação , Poder Psicológico
2.
Educ Inf Technol (Dordr) ; : 1-38, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36718426

RESUMO

Distance learning has been adopted as an alternative learning strategy to the face-to-face teaching methodology. It has been largely implemented by many governments worldwide due to the spread of the COVID-19 pandemic and the implication in enforcing lockdown and social distancing. In emergency situations distance learning is referred to as Emergency Remote Teaching (ERT). Due to this dynamic, sudden shift, and scaling demand in distance learning, many challenges have been accentuated. These include technological adoption, student commitments, parent involvement, and teacher extra burden management, changes in the organization methodology, in addition to government development of new guidelines and regulations to assess, manage, and control the outcomes of distance learning. The objective of this paper is to analyze the alternatives of distance learning and discuss how these alternatives reflect on student academic performance and retention in distance learning education. We first, examine how different stakeholders make use of distance learning to achieve the learning objectives. Then, we evaluate various alternatives and criteria that influence distance learning, we study the correlation between them and extract the best alternatives. The model we propose is a multi-criteria decision-making model that assigns various scores of weights to alternatives, then the best-scored alternative is passed through a recommendation model. Finally, our system proposes customized recommendations to students, and teachers which will lead to enhancing student academic performance. We believe that this study will serve the education system and provides valuable insights and understanding of the use of distance learning and its effectiveness.

3.
Sensors (Basel) ; 20(6)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213969

RESUMO

Health monitoring and its related technologies is an attractive research area. The electrocardiogram (ECG) has always been a popular measurement scheme to assess and diagnose cardiovascular diseases (CVDs). The number of ECG monitoring systems in the literature is expanding exponentially. Hence, it is very hard for researchers and healthcare experts to choose, compare, and evaluate systems that serve their needs and fulfill the monitoring requirements. This accentuates the need for a verified reference guiding the design, classification, and analysis of ECG monitoring systems, serving both researchers and professionals in the field. In this paper, we propose a comprehensive, expert-verified taxonomy of ECG monitoring systems and conduct an extensive, systematic review of the literature. This provides evidence-based support for critically understanding ECG monitoring systems' components, contexts, features, and challenges. Hence, a generic architectural model for ECG monitoring systems is proposed, an extensive analysis of ECG monitoring systems' value chain is conducted, and a thorough review of the relevant literature, classified against the experts' taxonomy, is presented, highlighting challenges and current trends. Finally, we identify key challenges and emphasize the importance of smart monitoring systems that leverage new technologies, including deep learning, artificial intelligence (AI), Big Data and Internet of Things (IoT), to provide efficient, cost-aware, and fully connected monitoring systems.


Assuntos
Eletrocardiografia/instrumentação , Monitorização Fisiológica/instrumentação , Serviços de Assistência Domiciliar , Hospitais , Humanos , Processamento de Sinais Assistido por Computador
4.
J Cloud Comput (Heidelb) ; 12(1): 10, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36691661

RESUMO

Supporting security and data privacy in cloud workflows has attracted significant research attention. For example, private patients' data managed by a workflow deployed on the cloud need to be protected, and communication of such data across multiple stakeholders should also be secured. In general, security threats in cloud environments have been studied extensively. Such threats include data breaches, data loss, denial of service, service rejection, and malicious insiders generated from issues such as multi-tenancy, loss of control over data and trust. Supporting the security of a cloud workflow deployed and executed over a dynamic environment, across different platforms, involving different stakeholders, and dynamic data is a difficult task and is the sole responsibility of cloud providers. Therefore, in this paper, we propose an architecture and a formal model for security enforcement in cloud workflow orchestration. The proposed architecture emphasizes monitoring cloud resources, workflow tasks, and the data to detect and predict anomalies in cloud workflow orchestration using a multi-modal approach that combines deep learning, one class classification, and clustering. It also features an adaptation scheme to cope with anomalies and mitigate their effect on the workflow cloud performance. Our prediction model captures unsupervised static and dynamic features as well as reduces the data dimensionality, which leads to better characterization of various cloud workflow tasks, and thus provides better prediction of potential attacks. We conduct a set of experiments to evaluate the proposed anomaly detection, prediction, and adaptation schemes using a real COVID-19 dataset of patient health records. The results of the training and prediction experiments show high anomaly prediction accuracy in terms of precision, recall, and F1 scores. Other experimental results maintained a high execution performance of the cloud workflow after applying adaptation strategy to respond to some detected anomalies. The experiments demonstrate how the proposed architecture prevents unnecessary wastage of resources due to anomaly detection and prediction.

5.
J Pers Med ; 12(5)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35629190

RESUMO

Precision medicine can be defined as the comparison of a new patient with existing patients that have similar characteristics and can be referred to as patient similarity. Several deep learning models have been used to build and apply patient similarity networks (PSNs). However, the challenges related to data heterogeneity and dimensionality make it difficult to use a single model to reduce data dimensionality and capture the features of diverse data types. In this paper, we propose a multi-model PSN that considers heterogeneous static and dynamic data. The combination of deep learning models and PSN allows ample clinical evidence and information extraction against which similar patients can be compared. We use the bidirectional encoder representations from transformers (BERT) to analyze the contextual data and generate word embedding, where semantic features are captured using a convolutional neural network (CNN). Dynamic data are analyzed using a long-short-term-memory (LSTM)-based autoencoder, which reduces data dimensionality and preserves the temporal features of the data. We propose a data fusion approach combining temporal and clinical narrative data to estimate patient similarity. The experiments we conducted proved that our model provides a higher classification accuracy in determining various patient health outcomes when compared with other traditional classification algorithms.

6.
IEEE Access ; 9: 74044-74067, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34812394

RESUMO

Cardio Vascular Diseases (CVD) is the leading cause of death globally and is increasing at an alarming rate, according to the American Heart Association's Heart Attack and Stroke Statistics-2021. This increase has been further exacerbated because of the current coronavirus (COVID-19) pandemic, thereby increasing the pressure on existing healthcare resources. Smart and Connected Health (SCH) is a viable solution for the prevalent healthcare challenges. It can reshape the course of healthcare to be more strategic, preventive, and custom-designed, making it more effective with value-added services. This research endeavors to classify state-of-the-art SCH technologies via a thorough literature review and analysis to comprehensively define SCH features and identify the enabling technology-related challenges in SCH adoption. We also propose an architectural model that captures the technological aspect of the SCH solution, its environment, and its primary involved stakeholders. It serves as a reference model for SCH acceptance and implementation. We reflected the COVID-19 case study illustrating how some countries have tackled the pandemic differently in terms of leveraging the power of different SCH technologies, such as big data, cloud computing, Internet of Things, artificial intelligence, robotics, blockchain, and mobile applications. In combating the pandemic, SCH has been used efficiently at different stages such as disease diagnosis, virus detection, individual monitoring, tracking, controlling, and resource allocation. Furthermore, this review highlights the challenges to SCH acceptance, as well as the potential research directions for better patient-centric healthcare.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa