Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 21(1): 817, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33225905

RESUMO

BACKGROUND: Small nucleolar RNAs (snoRNAs) are non-coding RNAs that are conserved from archaebacteria to mammals. They are associated in the nucleolus, with proteins to form small nucleolar ribonucleoprotein (snoRNPs). They modify ribosomal RNAs, for example, the H/ACA box that converts uridine to pseudouridine. In humans, various pathologies have been associated with snoRNAs, and several snoRNAs have been reported to participate in many cancer processes. Recently, a new H/ACA box snoRNA named jouvence has been identified in Drosophila and has been shown to be involved in lifespan determination in relation to gut homeostasis. Because snoRNAs are conserved through evolution, both structurally and functionally, a jouvence orthologue has been identified in humans. RT-PCR has revealed that jouvence is expressed, suggesting that it might be functional. These results suggest the hypothesis that jouvence may display similar functions, including increasing the healthy lifespan in humans. RESULTS: Here, we report the characterization of the human snoRNA jouvence, which has not yet been annotated in the genome. We show that its overexpression significantly stimulates cell proliferation, both in various stable cancerous cell lines as well as in primary cells. By contrast, its knockdown by siRNA leads to the opposite phenotype, a rapid decrease in cell proliferation. Transcriptomic analysis (RNA-Seq) revealed that the overexpression of jouvence leads to a dedifferentiation signature of the cells. Conversely, the knockdown of jouvence led to a striking decrease in the expression levels of genes involved in ribosome biogenesis and the spliceosome. CONCLUSION: The overexpression of a single and short non-coding RNA of 159 nucleotides, the snoRNA-jouvence, seems to be sufficient to reorient cells toward stemness, while its depletion blocks cell proliferation. In this context, we speculate that the overexpression of jouvence, which appears to be a non-canonical H/ACA snoRNA, could represent a new tool to fight against the deleterious effects of aging, while inversely, its knockdown by siRNA could represent a new approach in cancer therapy.


Assuntos
Pseudouridina , RNA Nucleolar Pequeno , Animais , Proliferação de Células/genética , Perfilação da Expressão Gênica , Humanos , RNA Ribossômico/genética , RNA Nucleolar Pequeno/genética
2.
Am J Transl Res ; 12(9): 5797-5807, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042459

RESUMO

Colon cancer develops according to a defined temporal sequence of genetic and epigenetic molecular events that may primarily affect cancer stem cells. In an attempt to identify new markers of such cells that would help predict patient outcome, we performed a comparative transcriptome analysis of colon cancer stem cells and normal colon stem cells. We identified 162 mRNAs, either over- or under-expressed. According to Cox multivariate regression with our set of 83 colorectal cancers, low expression of ABCB1, NEO1, tumor size and the presence of distant metastases were predictive factors for overall survival. Combined expression of ABCC1 and NEO1 was a significant predictor for overall survival in our cohort, which was confirmed by external validation in 221 colorectal cancers from the Cancer Genome Atlas (TCGA) portal. Tumor size, lymph node involvement and HIST1H2AE expression were also independently correlated with disease-free survival. Taken together, our results suggest that molecular markers of colorectal cancers ABCB1, NEO1 and HIST1H2AE are prognostic factors in colorectal cancer patients. It can be proposed that surveying expression of these marker genes should help better characterizing CRC prognosis, and help selecting the best therapeutic options.

3.
Int J Oncol ; 49(6): 2558-2568, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27748801

RESUMO

Colorectal cancer (CRC) is one of the most aggressive cancers worldwide. Several anticancer agents are available to treat CRC, but eventually cancer relapse occurs. One major cause of chemotherapy failure is the emergence of drug-resistant tumor cells, suspected to originate from the stem cell compartment. The aim of this study was to ask whether drug resistance was associated with the acquisition of stem cell-like properties. We isolated drug-resistant derivatives of two human CRC cell lines, HT29 and HCT116, using two anticancer drugs with distinct modes of action, oxaliplatin and docetaxel. HT29 cells resistant to oxaliplatin and both HT29 and HCT116 cells resistant to docetaxel were characterized for their expression of genes potentially involved in drug resistance, cell growth and cell division, and by surveying stem cell-like phenotypic traits, including marker genes, the ability to repair cell-wound and to form colonospheres. Among the genes involved in platinum or taxane resistance (MDR1, ABCG2, MRP2 or ATP7B), MDR1 was uniquely overexpressed in all the resistant cells. An increase in the cyclin-dependent kinase inhibitor p21, in cyclin D1 and in CD26, CD166 cancer stem cell markers, was noted in the resistant cells, together with a higher ability to form larger and more abundant colonospheres. However, many phenotypic traits were selectively altered in either HT29- or in HCT116-resistant cells. Expression of EPHB2, ITGß-1 or Myc was specifically increased in the HT29-resistant cells, whereas only HCT116-resistant cells efficiently repaired cell- wounds. Taken together, our results show that human CRC cells selected for their resistance to anticancer drugs displayed a few stem cell characteristics, a small fraction of which was shared between cell lines. The occurrence of marked phenotypic differences between HT29- and HCT116-drug resistant cells indicates that the acquired resistance depends mostly on the parental cell characteristics, rather than on the drug type used.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Células-Tronco Neoplásicas/patologia , Compostos Organoplatínicos/farmacologia , Taxoides/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antígenos CD/metabolismo , Apoptose/efeitos dos fármacos , Moléculas de Adesão Celular Neuronais/metabolismo , Ciclo Celular/efeitos dos fármacos , Divisão Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dipeptidil Peptidase 4/metabolismo , Docetaxel , Proteínas Fetais/metabolismo , Células HCT116 , Células HT29 , Humanos , Integrina beta1/metabolismo , Oxaliplatina , Fenótipo , Receptor EphB2/metabolismo
4.
Med Sci (Paris) ; 32(12): 1103-1110, 2016 Dec.
Artigo em Francês | MEDLINE | ID: mdl-28044974

RESUMO

Pre-mRNA splicing is an obligatory step required to assemble the vast majority of mRNAs in eukaryotes. In humans, each gene gives rise to at least two transcripts, with an average 6-8 spliced transcripts per gene. Pre-mRNA splicing is not unequivocal. Variations may occur, such that splicing can become alternative, thereby participating in increasing protein variability and restricting the gap that exists between the relatively low number of genes - between 20,000 and 25,000 in humans - and the much higher number of distinct proteins - at least 100,000. In addition, although alternative pre-mRNA splicing often fulfils cell-specific needs, many aberrant splicing events can happen and lead to either hereditary or acquired diseases such as neurodegenerative diseases or cancers. In those cases, alternative splicing events may serve as disease-associated markers, or even as targets for corrective approaches. In this review, we will summarize the main aspects of regulated alternative splicing. We will present the spliceosome, a large ribonucleoprotein complex that orchestrates the splicing reactions and that was recently identified as a preferential target for mutations in several pathologies. We shall discuss some spliceosome-associated defects linked to either cis (i.e on the DNA) or trans (e.g. in proteins) alterations of splicing machinery, like those that have been reported in genetic or acquired diseases.


Assuntos
Precursores de RNA/metabolismo , Splicing de RNA/fisiologia , Spliceossomos/fisiologia , Processamento Alternativo/genética , Animais , Progressão da Doença , Humanos , Mutação/fisiologia , Neoplasias/genética , Neoplasias/patologia , RNA Mensageiro/metabolismo , Spliceossomos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa