Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Nitric Oxide ; 144: 47-57, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38307377

RESUMO

Heart failure (HF) is a multifactorial, heterogeneous systemic disease that is considered one of the leading causes of death and morbidity worldwide. It is well-known that endothelial dysfunction (ED) plays an important role in cardiac disease etiology. A reduction in the bioavailability of nitric oxide (NO) in the bloodstream leads to vasoconstriction and ED. Many studies indicated diminishment of peripheral arteries vasodilation that is mediated by the endothelium in the of patients with chronic HF. With the advancement of nanomedicine, nanotechnology can provide adequate solutions for delivering exogenous NO with the aid of nanoparticles (NPs) to treat ED. The properties of superparamagnetic iron oxide nanoparticles (SPIONs) enable both passive and active delivery of drugs. This prompted us to investigate the efficacy of our newly-developed hydrogel nanoparticles (NO-RPs) for the delivery and sustained release of NO gas to alleviate cardiac failure and inflammation in the heart failure zebrafish model. The hydrogel NO-RPs incorporate SPIONS and NO precursor. The sustainend release of NO in the NO-RPs (4200 s), overcomes the problem of the short half life of NO in vivo which is expected to ameliorate the reduced NO bioavailabilty, and its consequences in endothelial and cardiac dysfunction. Zebrafish embryos were used as the animal model in this study to determine the effect of SPIONs-loaded NO-RPs on the cardiovascular system. Cardiac failure was induced in 24hpf embryos by exposure to aristolochic acid (AA)(0.25, 0.5 µM) for 8 h, followed by the SPIONs-loaded NO-RPs (0.25, 0.5 mg/ml) for 48 h, experimental groups included: control group which is healthy non treated zebrafish embryos, AA injured zebrafish embryos (HF) model,and NO-RP treated HF zebrafish embryos. Survival rate was assessed at 72hpf. Cardiac function was also evaluated by analyzing cardiac parameters including heartbeat, major blood vessels primordial cardinal vein and dorsal aorta (PCV &DA) diameter, blood flow velocity in PCV & DA vessels, cardiac output, and PCV & DA shear stresses. All cardiac parameters were analyzed with the aid of MicroZebraLab blood flow analysis software from Viewpoint. In addition, we studied the molecular effects of the developed NO-RPs on the mRNA expression of selected pro-inflammatory markers: IL-6, and Cox-2. Our findings demonstrated that the NO-RPs improved the survival rate in the heart failure zebrafish model and reversed heart failure by enhancing blood flow perfusion in Zebrafish embryos, significantly. In addition, RT-PCR results showed that the NO-RPs significantly reduced the expression of pro-inflammatory markers (lL-6&COX-2) in the heart failure zebrafish model. Our study confirmed that the developed SPIONs-loaded NO-RPs are effective tool to alleviate cardiac failure and inflammation in the HF zebrafish model.


Assuntos
Estruturas Embrionárias , Insuficiência Cardíaca , Nanopartículas , Sistema Porta/embriologia , Humanos , Animais , Peixe-Zebra , Óxido Nítrico/uso terapêutico , Ciclo-Oxigenase 2 , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Inflamação/induzido quimicamente , Hidrogéis/efeitos adversos
2.
J Liposome Res ; 34(1): 135-177, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37144339

RESUMO

Over the last few decades, cancer has been considered a clinical challenge, being among the leading causes of mortality all over the world. Although many treatment approaches have been developed for cancer, chemotherapy is still the most utilized in the clinical setting. However, the available chemotherapeutics-based treatments have several caveats including their lack of specificity, adverse effects as well as cancer relapse and metastasis which mainly explains the low survival rate of patients. Lipid nanoparticles (LNPs) have been utilized as promising nanocarrier systems for chemotherapeutics to overcome the challenges of the currently applied therapeutic strategies for cancer treatment. Loading chemotherapeutic agent(s) into LNPs improves drug delivery at different aspects including specific targeting of tumours, and enhancing the bioavailability of drugs at the tumour site through selective release of their payload, thus reducing their undesired side effects on healthy cells. This review article delineates an overview of the clinical challenges in many cancer treatments as well as depicts the role of LNPs in achieving optimal therapeutic outcomes. Moreover, the review contains a comprehensive description of the many LNPs categories used as nanocarriers in cancer treatment to date, as well as the potential of LNPs for future applications in other areas of medicine and research.


Assuntos
Nanopartículas , Neoplasias , Humanos , Lipossomos , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Lipídeos , Portadores de Fármacos
3.
Drug Dev Ind Pharm ; 50(3): 223-235, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38305197

RESUMO

BACKGROUND: Breast cancer (BC) stands as the second-leading cause of mortality among women worldwide. Many chemotherapeutic treatments for BC come with significant adverse effects. Additionally, BC is recognized as one of the most resistant forms of malignancy to treatment. Consequently, there exists a critical need for innovative therapeutic agents that are both highly effective and exhibit reduced toxicity and side effects for patients. Deferasirox (DFX), an iron-chelating drug approved by the FDA for oral use, emerges as a promising contender in the fight against BC proliferation. DFX, primarily administered orally, is utilized to address chronic iron excess resulting from blood transfusions, and it is the inaugural treatment for chronic iron overload syndrome. However, DFX encounters limitations due to its poor water solubility. AIM: This study aimed at incorporating DFX into lipid nanocapsules (DFX-LNCs) followed by investigating the anticancer effect of the DFX nanoform as compared to free DFX in-vitro and on an orthotopic BC mouse model in-vivo. METHODS: The DFX-LNCs was prepared and imaged using TEM and also characterized in terms of particle size (PS), zeta potential (ZP), and polydispersity index (PDI) using DLS. Moreover, drug release, cytotoxicity, and anticancer effect were assessed in-vitro, and in-vivo. RESULTS: The results revealed that DFX-LNCs are more cytotoxic than free DFX with IC50 of 4.417 µg/ml and 16.114 µg/ml, respectively, while the plain LNCs didn't show any cytotoxic effect on the 4T1 cell line (IC50 = 122.797 µg/ml). Besides, the apoptotic effect of DFX-LNCs was more pronounced than that of free DFX, as evidenced by Annexin V/PI staining, increased BAX expression, and decreased expression of BcL-2. Moreover, DFX-LNCs showed a superior antitumor effect in-vivo with potent antioxidant and anti-proliferative effects. CONCLUSION: The newly developed DFX nanoform demonstrated a high potential as a promising therapeutic agent for BC treatment.


Assuntos
Neoplasias da Mama , Sobrecarga de Ferro , Humanos , Feminino , Camundongos , Animais , Deferasirox/farmacologia , Deferasirox/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Quelantes de Ferro/efeitos adversos , Ferro/uso terapêutico , Sobrecarga de Ferro/induzido quimicamente , Sobrecarga de Ferro/tratamento farmacológico
4.
Drug Dev Ind Pharm ; 49(3): 271-280, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37067846

RESUMO

BACKGROUND: Breast cancer conventional therapeutics are effective; however, they encounter some limitations including multidrug resistance, the presence of pharmacological barriers, and non-selectivity which hinder their optimal therapeutic efficacy. AIM: Overcoming such drawbacks necessitates the development of efficient drug vehicles including lipid-based nanoparticles. This study aimed to quantitatively investigate in-vitro the synergistic therapeutic effect of the novel combination of capsaicin and 5-fluorouracil (5-FU) encapsulated in lipid nanocapsules (LNCs). METHOD: To this end, thorough physicochemical and in-vitro assessments on the breast cancer cell line (MCF-7) were done. The drug-loaded LNCs were characterized using DLS, TEM imaging, stability study, and in-vitro release study. Furthermore, the biological activity of the prepared LNCs was assessed by implementing comparative cytotoxicity studies as well as apoptosis, and cell cycle flow cytometric analyses. RESULTS: The developed nanoformulations were monodisperse with average particle size (PS) of 31, 43.8, and 127.3 nm for empty LNCs, Cap-LNCs, and 5-FU-LNCs, respectively, and with a surface charge of -35.4, -21.7 and -31.4 mV, respectively, reflecting good physical stability. The TEM micrographs revealed the spherical morphology of the drugs-loaded LNCs with comparable PS to that obtained by DLS. on the other hand, all the biological assessments confirmed the superior antiproliferative effect of the combined drug-loaded LNCs over their free drug counterparts. CONCLUSION: Intriguingly, the study findings highlighted the potential synergistic activity of the drugs (capsaicin and 5-FU) and the extensive enhancement of their biological activity through incorporation into LNCs. Such promising results will pave the way to further novel combined nanoformulation in preclinical and clinical studies on breast cancer patients.


Assuntos
Neoplasias da Mama , Nanocápsulas , Humanos , Feminino , Nanocápsulas/química , Neoplasias da Mama/tratamento farmacológico , Capsaicina/farmacologia , Fluoruracila/farmacologia , Lipídeos/química
5.
Mol Pharm ; 19(11): 3757-3769, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36053057

RESUMO

The placenta is a dynamic and complex organ that plays an essential role in the health and development of the fetus. Placental disorders can affect the health of both the mother and the fetus. There is currently an unmet clinical need to develop nanoparticle-based therapies to target and treat placental disorders. However, little is known about the interaction of nanoparticles (NPs) with the human placenta under biomimetic conditions. Specifically, the impact of shear stress exerted on the trophoblasts (placental epithelial cells) by the maternal blood flow, the gradual fusion of the trophoblasts along the gestation period (syncytialization), and the impact of microvilli formation on the cell uptake of NPs is not known. To this end, we designed dynamic placenta-on-a-chip models using BeWo cells to recapitulate the micro-physiological environment, and we induced different degrees of syncytialization via chemical induction with forskolin. We characterized the degree of syncytialization quantitatively by measuring beta human chorionic gonadotropin (ß-hCG) secretion, as well as qualitatively by immunostaining the tight junction protein, ZO-1, and counter nuclear staining. We also characterized microvilli formation under static and dynamic conditions via F-actin staining. We used these models to measure the cell uptake of chondroitin sulfate a binding protein (CSA) conjugated and control liposomes using confocal microscopy, followed by image analysis. Interestingly, exposure of the cells to a dynamic flow of media intrinsically induced syncytialization and microvilli formation compared to static controls. Under dynamic conditions, BeWo cells produced more ß-hCG in conditions that increased the cell exposure time to forskolin (p < 0.005). Our cell uptake results clearly show a combined effect of the exerted shear stress and forskolin treatment on the cell uptake of liposomes as uptake increased in forskolin exposed conditions (p < 0.05). Overall, the difference in the extent of cell uptake of liposomes among the different conditions clearly displays a need for the development of dynamic models of the placenta that consider the changes in the placental cell phenotype along the gestation period, including syncytialization, microvilli formation, and the expression of different transport and uptake receptors. Knowledge generated from this work will inform future research aiming at developing drug delivery systems targeting the placenta.


Assuntos
Nanopartículas , Trofoblastos , Feminino , Gravidez , Humanos , Trofoblastos/metabolismo , Placenta/metabolismo , Colforsina/farmacologia , Colforsina/metabolismo , Lipossomos/metabolismo , Dispositivos Lab-On-A-Chip , Proteínas de Transporte/metabolismo
6.
Clin Oral Investig ; 26(3): 2537-2553, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34661742

RESUMO

OBJECTIVE: This study aimed to evaluate the regenerative capacity of a newly-developed polycaprolactone (PCL)-based nanofibrous composite scaffold either alone or in combination with adipose-derived mesenchymal stem cells (ADSCs) as a treatment modality for class II furcation defects. MATERIALS AND METHODS: After ADSCs isolation and scaffold characterization, the mandibular premolars of adult male mongrel dogs were selected and randomly assigned into three equal groups. In group I, class II furcation defects were surgically induced to the inter-radicular bone. While class II furcation defects of group II were induced as in group I. In addition, the defects were filled with the prefabricated scaffold. Moreover, class II furcation defects of group III were induced as in group II and instead the defects were filled with the prefabricated scaffold seeded with ADSCs. The dogs were sacrificed at 30 days or at 60 days. Periodontal wound healing/regeneration was evaluated by radiological examination using cone beam computed tomography and histologically using ordinary, histochemical, and immunohistochemical staining. RESULTS: In the two examination periods, group II defects compared to group I, and group III compared to the other groups showed a decrease in defect dimensions radiographically. Histologically, histochemically, and immunohistochemically, they significantly demonstrated better periodontal wound healing/regeneration, predominant collagen type I of newly formed bone and periodontal ligament with a significant increase in the immunoreactivity of vascular endothelial growth factor and osteopontin. CONCLUSIONS: The newly fabricated nanofibrous scaffold has enhanced periodontal wound healing/regeneration of class II furcation defects with further enhancement achieved when ADSCs seeded onto the scaffold before implantation. CLINICAL RELEVANCE: The implementation of our newly-developed PCL-based nanofibrous composite scaffolds in class II furcation defect either alone or in conjunction with ADSCs can be considered as a suitable treatment modality to allow periodontal tissues regeneration.


Assuntos
Defeitos da Furca , Transplante de Células-Tronco Hematopoéticas , Nanofibras , Animais , Regeneração Óssea , Cemento Dentário , Cães , Defeitos da Furca/cirurgia , Regeneração Tecidual Guiada Periodontal/métodos , Masculino , Fator A de Crescimento do Endotélio Vascular
7.
Molecules ; 27(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35408546

RESUMO

In this study, a dual spinneret electrospinning technique was applied to fabricate a series of polyurethane (PU) and polyvinyl alcohol-gelatin (PVA/Gel) nanofibrous scaffolds. The study aims to enhance the properties of PU/PVA-Gel NFs loaded with a low dose of nanoceria through the incorporation of cinnamon essential oil (CEO). The as-prepared nCeO2 were embedded into the PVA/Gel nanofibrous layer, where the cinnamon essential oil (CEO) was incorporated into the PU nanofibrous layer. The morphology, thermal stability, mechanical properties, and chemical composition of the produced NF mats were investigated by STEM, DSC, and FTIR. The obtained results showed improvement in the mechanical, and thermal stability of the dual-fiber scaffolds by adding CEO along with nanoceria. The cytotoxicity evaluation revealed that the incorporation of CEO to PU/PVA-Gel loaded with a low dose of nanoceria could enhance the cell population compared to using pure PU/PVA-Gel NFs. Moreover, the presence of CEO could inhibit the growth rate of S. aureus more than E. coli. To our knowledge, this is the first time such nanofibrous membranes composed of PU and PVA-Gel have been produced. The first time was to load the nanofibrous membranes with both CEO and nCeO2. The obtained results indicate that the proposed PU/PVA-Gel NFs represent promising platforms with CEO and nCeO2 for effectively managing diabetic wounds.


Assuntos
Diabetes Mellitus , Nanofibras , Óleos Voláteis , Antibacterianos/química , Antibacterianos/farmacologia , Cério , Cinnamomum zeylanicum , Escherichia coli , Gelatina/química , Humanos , Nanofibras/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Poliuretanos/farmacologia , Álcool de Polivinil/química , Staphylococcus aureus , Cicatrização
8.
Drug Dev Ind Pharm ; 47(9): 1413-1423, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34735303

RESUMO

2-hydroxypropyl-ß-cyclodextrin (HPßCD) nanofiber films have high surface-to-volume ratio and show high dissolution rate of hydrophobic drugs. However, the solubility-enhancement effect of HPßCD films may not be enough to include an effective dose in a sublingually administrable film. Moreover, unmodified HPßCD films are very brittle and difficultly transported and/or handled. So, the addition of polyethylene glycol (PEG) as a plasticizer was suggested to improve their ultimate tensile strength (UTS) and solubilization of hydrophobic drugs. Accordingly, six nanofiber films were developed and characterized, using three molecular weights of PEG (400, 1500 and 6000 Da) with two concentrations each (1:100 and 2:100 PEG:HPßCD), in addition to the unmodified HPßCD nanofibrous film. The results revealed that adding 1:100 of PEG 400 increases the UTS (∼2-fold) and the average fiber diameter (AFD) (∼3-fold). Moreover, the addition of PEG 400 significantly increased the solubility of two hydrophobic model drugs; coumarin (up to 7.7-fold of the original solubility) and 2-nitroimidazole (up to 1.6-fold of the original solubility). However, with higher PEG concentration/molecular weight, both AFD and UTS of the films decreased. On the other hand, it was noted that the solubility of the two model drugs decreased upon using 1500-Da PEG, and then increased with 6000-Da PEG.


Assuntos
Nanofibras , 2-Hidroxipropil-beta-Ciclodextrina , Interações Hidrofóbicas e Hidrofílicas , Nanofibras/química , Solubilidade
9.
Metab Brain Dis ; 35(2): 385-399, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31728888

RESUMO

The present study evaluated the neuroprotective and antiepileptic efficacy of ellagic acid (EA) encapsulated in calcium-alginate nanoparticles (Ca2+-ALG NPs) in pentylenetetrazol (PTZ)-induced seizures in male mice. EA was encapsulated in ALG NPs using a nanospray drying method followed by ionotropic crosslinking with Ca2+. Characterization of the developed Ca2+-crosslinked EA-ALG NPs showed spherical, high stability NPs; successful loading of EA within crosslinked ALG NPs; and sustained release of EA. Male Swiss albino mice were divided into ten groups as follows; Group I- (control), Group II (50 mg EA /kg) - (EA), Group III polyethylene glycol (PEG), Group IV EA NPs (50 mg/kg) - (EA NP), Group (50 mg/kg alginate) V void V NPs - (void NPs), Group VI: (37.5 PTZ mg/kg) -(PTZ), Group VII: PTZ and EA - (PTZ-EA). Group VIII: animals received PTZ and PEG concurrently (PTZ-PEG). Group IX; animals received PTZ and void NPs concurrently - (PTZ-void). Group X: animals received PTZ and EA NPs concurrently (PTZ-EA NPs). PTZ was used to induce experimental epilepsy. Ca2+-ALG NPs prevented seizures throughout the experimental period and had a more prominent effect than free EA did. Ca2+-ALG NPs prevented increased glutamate, decreased GABA concentrations and ameliorated increased amyloid-ß and homocysteine levels in the serum and brain. Ca2+-EA-ALG NPs were superior to free EA in improving increased IL-6 and TNF-α. Ca2+-ALG NPs ameliorated PTZ-induced oxidative stress, as evidenced by decreased 4HNE levels and enhanced GSH, GR and GPx levels in the brain. These changes were accompanied by amelioration of apoptosis and its regulating proteins, including Cytochrome C, P53, Bax, Bcl2 and caspase-3 and caspase-9, and protected against DNA damage. Histological examination of the hippocampus confirmed that the neuroprotective effect of Ca2+-EA-ALG NPs was superior and more effective than that of free EA.


Assuntos
Encéfalo/efeitos dos fármacos , Citocinas/antagonistas & inibidores , Ácido Elágico/administração & dosagem , Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Convulsões/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Encéfalo/metabolismo , Citocinas/metabolismo , Ácido Elágico/síntese química , Masculino , Camundongos , Nanopartículas/química , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/síntese química , Estresse Oxidativo/fisiologia , Pentilenotetrazol/toxicidade , Distribuição Aleatória , Convulsões/induzido quimicamente , Convulsões/metabolismo
10.
Drug Dev Ind Pharm ; 45(7): 1149-1156, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31007093

RESUMO

Dry powder inhalers (DPIs) are considered a main drug delivery system through pulmonary route. The main objective of this work is to study the flow of differently shaped microparticles in order to find the optimum shape of drug particles that will demonstrate the best flow to the deep lung. The flowability of particles in air or any fluid depends particularly on the drag force which is defined as the resistance of the fluid molecules to the particle flow. One of the most important parameters that affect the drag force is the particles' shape. Computational simulations using COMSOL Multi Physics 5.2 software were performed for investigating the particles flow in the air pathways of lung, and the drag force was calculated for different particles shapes. This was accomplished by screening a set of 17 possible shapes that are expected to be synthesized easily in the micro-scale. In addition, the macro-scale behavior of the investigated shapes was also simulated so as to compare the behavior of the flowing particles in both cases. A very big difference was found between the behavior of particles' flow in the micro and macro scales, but a similar behavior can be obtained if the flow velocity of the microparticles is very high. It was also found that the micro-triangle with aspect ratio 2:1 has the least drag force in both deep and upper lung; so, it should be the shape of choice during the process of particle synthesis for pulmonary drug delivery.


Assuntos
Aerossóis/química , Preparações Farmacêuticas/química , Sistema Respiratório/efeitos dos fármacos , Administração por Inalação , Simulação por Computador , Sistemas de Liberação de Medicamentos/métodos , Inaladores de Pó Seco/métodos , Humanos , Hidrodinâmica , Tamanho da Partícula
11.
Drug Dev Ind Pharm ; 44(7): 1158-1170, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29429370

RESUMO

PURPOSE: Metformin hydrochloride (MF) repurposing as adjuvant anticancer therapy for colorectal cancer (CRC) proved effective. Several studies attempted to develop MF-loaded nanoparticles (NPs), however the entrapment efficiency (EE%) was poor. Thus, the present study aimed at the facile development of a new series of chitosan (CS)-based semi-interpenetrating network (semi-IPN) NPs incorporating Pluronic® nanomicelles as nanocarriers for enhanced entrapment and sustained release of MF for efficient treatment of CRC. METHODS: The NPs were prepared by ionic gelation and subsequently characterized using FTIR, DSC, TEM, and DLS. A full factorial design was also adopted to study the effect of various formulation variables on EE%, particle size, and zeta-potential of NPs. RESULTS: NPs had a spherical shape and a mean particle size ranging between 135 and 220 nm. FTIR and DSC studies results were indicative of successful ionic gelation with the drug being dispersed in its amorphous form within CS-Pluronic® matrix. Maximum EE% reaching 57.00 ± 12.90% was achieved using Pluronic®-123 based NPs. NPs exhibited a sustained release profile over 48 h. The MF-loaded NPs sensitized RKO CRC cells relative to drug alone. CONCLUSION: The reported results highlighted the novel utility of the developed NPs in the arena of colon cancer treatment.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Portadores de Fármacos/química , Metformina/química , Metformina/farmacologia , Nanopartículas/química , Linhagem Celular Tumoral , Quitosana/análogos & derivados , Quitosana/química , Liberação Controlada de Fármacos/efeitos dos fármacos , Humanos , Tamanho da Partícula
12.
Drug Dev Ind Pharm ; 43(10): 1567-1583, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28581834

RESUMO

Smart materials are those materials that are responsive to chemical (organic molecules, chemical agents or specific agents), biochemical (protein, enzymes, growth factors, substrates or ligands), physical (electric field, magnetic field, temperature, pH, ionic strength or radiation) or mechanical (pressure or mechanical stress) signals. These responsive materials interact with the stimuli by changing their properties or conformational structures in a predictable manner. Recently, smart polymers have been utilized in various biomedical applications. Particularly, they have been used as a platform to synthesize stimuli-responsive systems that could deliver therapeutics to a specific site for a specific period with minimal adverse effects. For instance, stimuli-responsive polymers-based systems have been recently reported to deliver different bioactive molecules such as carbohydrates (heparin), chemotherapeutic agents (doxorubicin), small organic molecules (anti-coagulants), nucleic acids (siRNA), and proteins (growth factors and hormones). Protein therapeutics played a fundamental role in treatment of various chronic and some autoimmune diseases. For instance insulin has been used in treatment of diabetes. However, being a protein in nature, insulin delivery is limited by its instability, short half-life, and easy denaturation when administered orally. To overcome these challenges, and as highlighted in this review article, much research efforts have been recently devoted to design and develop convenient smart controlled nanosystems for protein therapeutics delivery.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Polímeros/química , Proteínas/administração & dosagem , Sistemas de Liberação de Medicamentos , Meia-Vida , Concentração de Íons de Hidrogênio , Campos Magnéticos , Proteínas/química , Temperatura
13.
Int J Mol Sci ; 18(4)2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28417924

RESUMO

The power of tumorigenesis, chemo-resistance and metastasis in malignant ovarian tumors resides in a tiny population of cancer cells known as ovarian cancer stem cells (OCSCs). Developing nano-therapeutic targeting of OCSCs is considered a great challenge. The potential use of poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) was investigated as a drug delivery system for paclitaxel (PTX) against OCSCs in vitro and in vivo. PTX-loaded PLGA NPs were prepared by an emulsion solvent evaporation method, supported by incorporation of folic acid (FA) as the ligand. NPs were characterized for size, surface morphology, drug loading, and encapsulation efficiency. In vitro cytotoxicity of PTX-loaded FA/PLGA NPs was tested against OCSCs with MTT assay. In vivo anti-tumoral efficiency and active targeting potential of prepared NPs against tumors in nude mice were investigated. In vitro results revealed that IC50 of PTX was significantly reduced after loading on PLGA NPs. On the other hand, in vivo results showed that PLGA NPs enhanced the tumor suppression efficiency of PTX. Investigation with real time quantitative PCR analysis revealed the limiting expression of chemo-resistant genes (ABCG2 and MDR1) after applying PLGA NPs as a drug delivery system for PTX. Histopathological examination of tumors showed the effective biological influence of PTX-loaded FA/PLGA NPs through the appearance of reactive lymphoid follicles. Targeting potential of PTX was activated by FA/PLGA NPs through significant preservation of body weight (p < 0.0001) and minimizing the systemic toxicity in healthy tissues. Immunohistochemical investigation revealed a high expression of apoptotic markers in tumor tissue, supporting the targeting effect of FA/PLGA NPs. A drug delivery system based on FA/PLGA NPs can enhance PTX's in vitro cytotoxicity and in vivo targeting potential against OCSCs.


Assuntos
Antineoplásicos/administração & dosagem , Nanopartículas , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Ácido Láctico/química , Camundongos , Camundongos Nus , Nanomedicina , Nanopartículas/química , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/administração & dosagem , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Drug Dev Ind Pharm ; 42(5): 720-729, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26266964

RESUMO

In the present study, densely dispersed silver nanoparticles (Ag NPs) were rapidly green synthesized in the presence of Rumex dentatus aqueous extract, followed by UV-irradiation reduction. The Ag NPs were characterized using UV-vis spectroscopy, FTIR, XRD, and TEM. Then, the Ag NPs were incorporated into interpenetrating polymeric networks based on cationic trimethyl chitosan (TMCS) and anionic poly(acrylamide-co-sodium acrylate) copolymer to develop a new series of composite nanoparticles as potential antibacterial agents. Both TMCS and poly(acrylamide-co-sodium acrylate) were prepared in the study, and characterized using FTIR, DSC, and SEM. The synthesized Ag NPs showed high purity and uniform particle size distribution with particle size ranged between 5 and 30 nm. The composite nanoparticles demonstrated homogeneous spherical shape with size in the range of 378-402 nm. Both Ag NPs and the composite nanoparticles showed promising bactericidal activity as compared with the control. Moreover, the antibacterial activity of the composite nanoparticles increased along with increasing the concentrations of Ag NPs and the TMCS.


Assuntos
Antibacterianos/química , Quitosana/química , Nanopartículas Metálicas/química , Nanocompostos/química , Prata/química , Acrilamidas/síntese química , Acrilamidas/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Bacillus thuringiensis/efeitos dos fármacos , Quitosana/síntese química , Quitosana/farmacologia , Egito , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Extratos Vegetais/química , Pseudomonas aeruginosa/efeitos dos fármacos , Rumex/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
15.
Drug Dev Ind Pharm ; 42(5): 720-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26289003

RESUMO

In the present study, densely dispersed silver nanoparticles (Ag NPs) were rapidly green synthesized in the presence of Rumex dentatus aqueous extract, followed by UV-irradiation reduction. The Ag NPs were characterized using UV-vis spectroscopy, FTIR, XRD, and TEM. Then, the Ag NPs were incorporated into interpenetrating polymeric networks based on cationic trimethyl chitosan (TMCS) and anionic poly(acrylamide-co-sodium acrylate) copolymer to develop a new series of composite nanoparticles as potential antibacterial agents. Both TMCS and poly(acrylamide-co-sodium acrylate) were prepared in the study, and characterized using FTIR, DSC, and SEM. The synthesized Ag NPs showed high purity and uniform particle size distribution with particle size ranged between 5 and 30 nm. The composite nanoparticles demonstrated homogeneous spherical shape with size in the range of 378-402 nm. Both Ag NPs and the composite nanoparticles showed promising bactericidal activity as compared with the control. Moreover, the antibacterial activity of the composite nanoparticles increased along with increasing the concentrations of Ag NPs and the TMCS.


Assuntos
Antibacterianos/química , Quitosana/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Quitosana/farmacologia , Testes de Sensibilidade Microbiana/métodos , Microscopia Eletrônica de Varredura/métodos , Tamanho da Partícula , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Rumex/química , Prata/química , Espectrofotometria Ultravioleta/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos
16.
Drug Dev Ind Pharm ; 42(7): 1094-109, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26559404

RESUMO

The present work reports the synthesis of a new series of pyridopyrimidine derivatives. The newly synthesized compounds were characterized by various analytical and spectral techniques. In addition, their antimicrobial activity was evaluated as well as modeling studies were performed to investigate their ability to recognize and bind to the biotin carboxylase (BC)-active site. The results showed a broad spectrum antibacterial and antifungal profile of the synthesized derivatives. Docking results demonstrated that all members of this class of new derivatives were able to recognize the active site of Escherichia coli BC and form different types of bonding interactions with key active site amino acid residues. Besides the compounds with promising antimicrobial activity in addition to 6-aminothiouracil, as control, were incorporated into polycaprolactone nanoparticles to improve their water solubility, permeability through physiological barriers and consequently enhanced therapeutic efficacy. The compounds-loaded nanoparticles were prepared using single emulsion-solvent evaporation technique, and their diameters were found to be in the range 136 ± 30 to 213 ± 28 nm. Transmission electron microscopy (TEM) showed a spherical and dense morphology of the nanoparticles. The results also showed high entrapment efficiency of the synthesized bioactive compounds in the nanoparticles (85 ± 5% to 91 ± 2%) with a desirable in vitro biodegradation and release profiles.


Assuntos
Antibacterianos/síntese química , Descoberta de Drogas/métodos , Nanopartículas/química , Nanotecnologia/métodos , Tiouracila/análogos & derivados , Tiouracila/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Carbono-Nitrogênio Ligases/química , Liberação Controlada de Fármacos , Escherichia coli/enzimologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Tamanho da Partícula , Ligação Proteica , Propriedades de Superfície , Tiouracila/química , Tiouracila/farmacologia
17.
J Adhes Dent ; 16(1): 41-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24000334

RESUMO

PURPOSE: To study the effect of addition of poly(acrylamide-co-sodium acrylate) copolymer and/or TiO2 nanoparticles on the mechanochemical properties of conventional glass ionomer (GIC)-based restorative materials. MATERIALS AND METHODS: The copolymer was prepared, characterized and then added, either separately or in combination with different proportions of TiO2 nanoparticles to the conventional GIC powder. The developed composites were characterized using FTIR spectrometry, x-ray diffraction, and scanning electron microscopy. The mechanical properties of the obtained series of modified GIC formulations were investigated in comparison with other formulations containing only TiO2 nanoparticles through testing their compressive strength, flexural strength, and dentin shear bond strength. RESULTS: The preliminary data of the study showed a significant increase in the compressive strength of the conventional GIC after addition of 3% and 5% TiO2 nanoparticles by weight, but 7% decreased it. Upon addition of copolymer, the compressive strength was lower than that of the conventional GIC. The highest average compressive strength value was obtained upon incorporation of 7% 1:1 combination of copolymer-TiO2 nanoparticles. The results also demonstrated a significant increase in the flexural strength values after addition of both copolymer and TiO2 nanoparticles to the GIC powder. In addition, the results revealed a significant increase in values of dentin shear bond strength after copolymer addition with the highest value noted upon addition of 7% by weight of copolymer. CONCLUSION: The new series of modified glass ionomers developed here can be tailored to act as restorative materials with high quality performance in high stress-bearing areas.


Assuntos
Colagem Dentária , Cimentos de Ionômeros de Vidro/química , Resinas Acrílicas/química , Química Farmacêutica , Força Compressiva , Análise do Estresse Dentário/instrumentação , Dentina/ultraestrutura , Humanos , Umidade , Teste de Materiais , Fenômenos Mecânicos , Microscopia Eletrônica de Varredura , Nanopartículas/química , Maleabilidade , Resistência ao Cisalhamento , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Propriedades de Superfície , Temperatura , Fatores de Tempo , Titânio/química , Água/química , Difração de Raios X
18.
AAPS PharmSciTech ; 15(6): 1535-44, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25079240

RESUMO

Incorporation of drug-loaded nanoparticles into swellable and respirable microparticles is a promising strategy to avoid rapid clearance from the lung and achieve sustained drug release. In this investigation, a copolymer of polyethylene glycol grafted onto phthaloyl chitosan (PEG-g-PHCs) was synthesized and then self-assembled with ciprofloxacin to form drug-loaded nanoparticles. The nanoparticles and free drug were encapsulated into respirable and swellable alginate micro hydrogel particles and assessed as a novel system for sustained pulmonary drug delivery. Particle size, morphology, dynamic swelling profile, and in vitro drug release were investigated. Results showed that drug-loaded nanoparticles with size of 218 nm were entrapped into 3.9-µm micro hydrogel particles. The dry nano-in-micro hydrogel particles exhibited a rapid initial swelling within 2 min and showed sustained drug release. Preliminary in vivo pharmacokinetic studies were performed with formulations delivered to rats by intratracheal insufflation. Ciprofloxacin concentrations in plasma and in lung tissue and lavage were measured up to 7 h. The swellable particles showed lower ciprofloxacin levels in plasma than the controlled group (a mixture of lactose with micronized ciprofloxacin), while swellable particles achieved higher concentrations in lung tissue and lavage, indicating the swellable particles could be used for controlling drug release and prolonging lung drug concentrations.


Assuntos
Antibacterianos/administração & dosagem , Ciprofloxacina/administração & dosagem , Portadores de Fármacos , Pulmão/metabolismo , Nanopartículas , Polímeros/química , Administração por Inalação , Alginatos/química , Animais , Antibacterianos/sangue , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/toxicidade , Líquido da Lavagem Broncoalveolar/química , Linhagem Celular , Química Farmacêutica , Quitosana/análogos & derivados , Quitosana/química , Ciprofloxacina/sangue , Ciprofloxacina/química , Ciprofloxacina/farmacocinética , Ciprofloxacina/toxicidade , Preparações de Ação Retardada , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Hidrogéis , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Nanomedicina , Tamanho da Partícula , Polietilenoglicóis/química , Polímeros/toxicidade , Ratos Sprague-Dawley , Solubilidade , Propriedades de Superfície , Tecnologia Farmacêutica/métodos
19.
Sci Rep ; 14(1): 14382, 2024 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909063

RESUMO

Frequent and variant infections are caused by the virtue of opportunistic fungi pathogens. Candidiasis, aspergillosis, and mucormycosis are pathogenic microorganisms that give rise to vast fungal diseases that alternate between moderate to fatal in severity. The use of fluconazole as an antifungal drug was limited due to the acquired resistance in some types of Candida and other fungal species. This study aims to consolidate fluconazole's biological effectiveness against several pathogenic fungi. Six active monoterpenes (MTs) of carvacrol, linalool, geraniol, α-terpinene, citronellal, and nerolidol were selected and encapsulated in nanostructure lipid carrier (NLC) with (NLC-Flu-MTs) and/without (NLC-MTs) fluconazole in one nanoformulation to determine if they will act synergistically or not? The synthesized nanoformulation NLC-Flu-MTs and NLC-MTs exhibited very good particle size of 144.5 nm and 138.6 nm for size and zeta potential values of (- 23.5 mV) and (- 20.3 mV), respectively. Transmission electron microscope investigation confirmed that the synthesized NLCs have regular and spherical shape. The abundance and concentration of the six released monoterpenes were determined, as a novel approach, using GC-MS with very good results and validity. In-vitro antifungal screening was done before and after nano co-delivery against seven pathogenic, and aggressive fungi of Candida tropicalis, Candida krusei, Candida glabrata, Geotrichum Candidum, Candidaalbicans, Aspergillus Niger, and mucor circinelloides. Inhibition Zone diameter (IZD) and the minimum inhibitory concentration (MIC) were measured. Nanoformulations NLC-Flu-MTs and NLC-MTs manifested potential and unique biological susceptibility against all the tested microorganisms with reduced (MIC) values, especially against Candida Tropicalis (MIC = 0.97 µg/ml) which represents 16-fold of the value shown by NLC-MTs (MIC = 15.6 µg/ml) and 64-fold of fluconazole free before nanoformulation (MIC = 62.5 µg/ml). The efficiency of nanomaterials, particularly NLC-Flu-MTs, has become evident in the diminishing value of MIC which affirmed the synergism between fluconazole and the other six monoterpenes.


Assuntos
Antifúngicos , Fluconazol , Testes de Sensibilidade Microbiana , Monoterpenos , Nanoestruturas , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/administração & dosagem , Fluconazol/farmacologia , Fluconazol/química , Monoterpenos/farmacologia , Monoterpenos/química , Nanoestruturas/química , Lipídeos/química , Sinergismo Farmacológico , Portadores de Fármacos/química , Tamanho da Partícula , Candida/efeitos dos fármacos
20.
Int J Biol Macromol ; 259(Pt 2): 129195, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184049

RESUMO

Rheumatoid arthritis (RA), an autoimmune disease impacting the joints, significantly diminishes the quality of life for patients. Conventional treatments predominantly rely on oral or injectable formulations, underscoring the crucial need for an effective topical remedy. The present study reports a novel triple-layered transdermal platform for efficient RA treatment. The patches are based on an electrospun/electrosprayed diclofenac (DIC)-conjugated polyvinyl alcohol (PVA) nanofibers/nanoparticles (NFs/NPs) composite layer sandwiched between an electrospun supporting layer of polycaprolactone (PCL) NFs, and a 3D-printed sodium alginate-based hydrogel (HG) layer incorporating sodium hyaluronate (HA) and rosuvastatin (ROS)-loaded core-shell lipid nanocapsules (LNCs). The ingeniously designed transdermal patches release the chemically conjugated DIC via skin-secreted esterases at the inflamed sites. The LNCs and patches were characterized using DLS, FTIR, DSC, and electron microscopy. ROS-loaded LNCs (<50 nm as per the TEM micrographs) were able to release about 97 % of ROS during 5 days. In-vitro and in-vivo evaluations definitively established the efficacy of the developed platform, showcasing a substantial reduction in IL-6 and TNF-α through sandwich ELISA measurements in cell culture and Rattus norvegicus plasma samples. Besides, the stained photomicrographs of the rats' ankle joints confirmed the alleviation of the RA symptoms via reducing cell infiltration with a preserved joint tissue structure.


Assuntos
Artrite Reumatoide , Nanocápsulas , Nanofibras , Humanos , Ratos , Animais , Hidrogéis/química , Nanofibras/química , Alginatos/química , Qualidade de Vida , Espécies Reativas de Oxigênio , Artrite Reumatoide/tratamento farmacológico , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa