RESUMO
In this paper, the recycled fine aggregates and powders produced from crushing old basaltic concrete and natural basalt were used to produce new concrete. The sand was partially replaced by two types of recycled wastes at five percentages: 0%, 20%, 40%, 60%, and 80%. The cement was partially replaced by recycled powders and silica fume (SF) at four percentages: 0, 5%, 10%, and 20%. The concrete strengths and water absorption were obtained at several curing ages. The obtained results emphasized the positive effects of increasing the curing time on enhancing the concrete properties, regardless of the types or the waste sources. Moreover, the recycled powders retarded the hydration reaction. In addition, the recycled fine aggregates and powders could achieve about 99.5% and 99.3% of the ordinary concrete strength and enhance the tensile strength. Furthermore, the mix containing 40% of recycled fine concrete aggregate diffused the highest contents of both calcium and silicate, which led to enhancing the interfacial transition zone (ITZ) and concrete properties, compared to the other tested mixes. Finally, the water absorption of all tested concrete mixes decreased with an increase in the curing age, while the mixes integrating 10% and 20% of SF experienced the lowest values of water absorption.
RESUMO
The shear span-to-effective depth ratio is known to modulate the shear behaviour of steel beams with corrugated webs (SBCWs). However, present design standards for SBCWs do not adequately address this issue. The impact of shear span-to-effective depth ratio and pure bending spans on the failure mechanism of SBCWs was investigated in this study. Under four-point bending, three beams with shear-span-to-effective-depth-ratios ranging from 1.65 to 2.5 were examined to investigate the relationship between shear and bending spans and failure mechanisms. ANSYS software was used to create finite element models for the tested SBCWs using the finite element technique. In addition, the experimental findings are compared to two codes, specifically DASt-Rishtlinie015 and EN 1993-1-5. Moreover, an analytical section comprised of the creation of a three-dimensional (3D) finite element model (FEM) was implemented. Finally, a parametric study using the verified FE model was conducted to assess the impact of shear and pure bending spans on the overall behaviour of SBCWs. As a result, the shear span and horizontal fold length of CWSBs are key components for determining the strength and failure modes of beams. Furthermore, the load capabilities and stiffness of CWSBs were more greatly affected by increasing the shear span than by increasing the pure bending one.
RESUMO
The huge amounts of old and damaged tires spread worldwide has caused many complex environmental risks. The old tires have been converted to crumb rubber (CR) and tire recycled steel fiber (RSF) to facilitate their use. This study used CR to partially replace natural sand in reinforced (RC) columns. Externally bonded (EB) carbon-fiber-reinforced polymer (CFRP) laminates, welded wire mesh (WWM), and RSF were used to enhance the axial behavior of the tested columns to overcome the concrete deficiencies resulting from the inclusion of the CR instead of natural sand. Eighteen columns were prepared and tested to discuss the effects of strengthening type, CR content, RSF, and strengthening area on the axial behavior of the RC columns. Certain columns were internally reinforced with WWM, while others were externally strengthened with EB CFRP laminates. Partially or fully EB CFRP laminates were used to strengthen the columns. Moreover, one column was cast with NC and 0.2% RSF to investigate the role of RSF in confining the column. The results demonstrated a concrete strength reduction for the rubberized concrete (CRC) as the CR content increased. Conversely, the strengthened columns experienced higher load capacities than the corresponding un-strengthened ones cast with the same concrete mix. Moreover, adding 2% RSF to the NC mix could enhance the column capacity, although it decreased the concrete strength. Furthermore, using two CFRP layers increased the load capacity and ductility of the strengthened columns. The strengthened column cast with 50% CR showed the highest load efficiency (334.3% compared to the un-strengthened one).
RESUMO
The use of corrugated webs increases web shear stability and eliminates the need for transverse stiffeners in steel beams. Optimised regression learner techniques (ORLTs) are rarely used for calculating shear capacity in steel beam research. This study proposes a new approach for calculating the maximum shear capacity of steel beams with trapezoidal corrugated webs (SBCWs) by using ORLTs. A new shear model is proposed using ORLTs in accordance with plate buckling theory and previously developed formulas for predicting the shear strength of SBCWs. The proposed ORLT models are implemented using the regression learner toolbox of MATLAB software (2020b). The available data of more than 125 test results from different specimens prepared by previous researchers are used to create the model. In this study, web geometry and relevant web steel grades determine the shear capacity of SBCWs. Four regression methods are adopted. Results are compared with those of an artificial neural network model. The model output factor represents the ratio of the web vertical shear stress to the normalised shear stress. Shear capacity can be estimated on the basis of the resulting factor from the model. The proposed model is verified using two methods. In the first method, a series of tests are performed by the authors. In the second method, the results of the model are compared with the shear values obtained experimentally by other researchers. On the basis of the test results of previous studies and the current work, the proposed model provides an acceptable degree of accuracy for predicting the shear capacity of SBCWs. The results obtained using Gaussian process regression are the most appropriate because its recoded mean square error is 0.07%. The proposed model can predict the shear capacity of SBCWs with an acceptable percentage of error. The recoded percentage of error is less than 5% for 93% of the total specimens. By contrast, the maximum differential obtained is ±10%, which is recorded for 3 out of 125 specimens.
RESUMO
The growth of the construction industry has led to the greater consumption of natural resources, which has a direct or indirect negative impact on the environment. To mitigate this, recycled or waste materials are being used as a partial substitute in the manufacture of concrete. Among these waste materials is cement kiln dust (CKD), which is produced during cement production. This study investigated the potential benefits of replacing part of the cement with CKD in two construction applications, i.e., plain concrete and cement blocks. This reflects positively on cost, energy, and the environment, since putting CKD in a landfill damages agricultural soil and plant respiration. In this study, an experimental program was carried out to study how replacing various percentages of ordinary portland cement (OPC) with CKD affected the compressive strengths, the tensile strengths, and the air contents of concrete and cement blocks. Although the results showed that the compressive and tensile strengths decreased as the amount of CKD increased, the air content of the concrete increased, which showed that 5% CKD was suitable for such applications. The results were used to propose two equations that approximate the concrete and cement block compressive strengths according to the CKD replacement percentage.
RESUMO
It is essential to make openings in structural concrete elements to accommodate mechanical and electrical needs. To study the effect of these openings on the performance of reinforced concrete (RC) elements, a numerical investigation was performed and validated using previous experimental work. The effect of the position and dimension of the opening and the beam length on the response of the beams, loads capacities, and failure modes was studied. The simulated RC beams showed different responses, loads capacities, and failure modes depending on the position and dimension of the opening. The transversal near support opening (TNSH) and longitudinal holes (LH) showed lower effects on the load capacities of the beams than the transversal near center opening (TNCH). The supreme reduction percentages of the load capacity (µu%) for beams with TNCH and TNSH were 37.21% and 30.34%, respectively (opening size = 150 × 150 mm2). In addition, the maximum µu% for beam with LH was 17.82% (opening size = 25% of the beam size). The TNSH with a width of less than 18.18% of the beam shear span (550 mm) had trivial effects on the beam's load capacities (the maximum µu% = 1.26%). Although the beams with combined LH and TNCH or LH and TNSH showed different failure modes, they experienced nearly the same load reductions. Moreover, the length of the beam (solid or hollow) had a great effect on its failure mode and load capacity. Finally, equations were proposed and validated to calculate the yield load and post-cracking deflection for the concrete beams with a longitudinal opening.
RESUMO
Literature of Steel Beams with a thin-walled trapezoidal Corrugated Web (SBCWs) shows that the capacity of SBCWs is affected by both the fatigue cracks initiated along the inclined folds (IFs) and the maximal additional stress located in the middle of the IFs. An experimental investigation on the behaviour of hybrid SBCWs under flexure is presented in this paper. This study focuses on the effect of the welding IF between the web and flanges (IFs welded or non-welded), the horizontal-fold length (200, 260, and 350 mm), and transversal flange stiffeners on the failure mechanism of the SBCW under three line load. Accordingly, six hybrid specimens were fabricated, instrumented, and tested (five SBCW specimens and one specimen with a flat web). The test setup was designed to generate shear and a moment in the testing zone via three-point bending. The results indicated that non-welded IFs specimens with or without flange stiffeners failed owing to web tearing after web and flange local buckling. The failure mode of the specimen with continuous welding between the web and flanges was local flange buckling. Finally, the paper presents a comparison between the experimental results and the European Code to predict the capacity of the flange towards local buckling. It was concluded that the non-welding the IFs affected the inelastic behaviour and the capacity of the SBCWs. In addition, the bending resistance equations presented by EN 1993-1-5 can safely predict the test results of the non-welded inclined fold and yield a high safe variation.