RESUMO
Introduction: Neutrophil granulocytes predominate in the lungs of patients infected with Mycobacterium tuberculosis (Mtb) in earlier stages of the disease. During infection, neutrophils release neutrophil extracellular traps (NETs), an antimicrobial mechanism by which a DNA-backbone spiked with antimicrobial components traps the mycobacteria. However, the specific mycobacterial factors driving NET formation remain unclear. Proteins from the proline-glutamic acid (PE)/proline-proline-glutamic acid (PPE) family are critical to Mtb pathophysiology and virulence. Methods: Here, we investigated NET induction by PE18, PPE26, and PE31 in primary human blood-derived neutrophils. Neutrophils were stimulated with the respective proteins for 3h, and NET formation was subsequently assessed using confocal fluorescence microscopy. Intracellular ROS levels and cell necrosis were estimated by flow cytometry. Additionally, the influence of phorbol-12-myristate-13-acetate (PMA), a known NADPH oxidase enhancer, on NET formation was examined. Neutrophil integrity following incubation with the PE/PPE proteins was evaluated using transmission electron microscopy. Results: For the first time, we report that stimulation of primary human blood-derived neutrophils with Mtb proteins PE18, PPE26, and PE31 resulted in the formation of NETs, which correlated with an increase in intracellular ROS levels. Notably, the presence of PMA further amplified this effect. Following incubation with the PE/PPE proteins, neutrophils were found to remain viable and structurally intact, as verified through transmission electron microscopy, indicating the occurrence of vital NET formation. Discussion: These findings offer valuable insights that contribute to a better understanding of host-pathogen interactions during Mtb infection. Moreover, they underscore the significance of these particular Mtb antigens in triggering NET formation, representing a distinctive and previously unrecognized function of PE/PPE antigens.
Assuntos
Armadilhas Extracelulares , Mycobacterium tuberculosis , Humanos , Espécies Reativas de Oxigênio , Ácido Glutâmico , NeutrófilosRESUMO
Mycobacterium tuberculosis accumulates large amounts of triacylglycerol (TAG) which acts as storage compounds for energy and carbon. The mycobacterial triacylglycerols stored in the form of intracellular lipid droplets are essential for long-term survival of M. tuberculosis during a dormant state. We report here that when the M. tuberculosis mycolytransferase Ag85A is overexpressed in Mycobacterium smegmatis mc(2)155, cell morphology was changed and the cells became grossly enlarged. A massive formation of lipid bodies and a change in lipid pattern was observed simultaneously. We suspected a possible role of Ag85A in the acyl lipid metabolism and discovered that the enzyme possesses acyl-CoA:diacylglycerol acyltransferase (DGAT) activity in addition to its well-known function as mycolyltransferase. Ag85A mediates the transesterification of diacylglycerol using long-chain acyl-CoA as acyl donors. The K(m) and K(cat) values for palmitoleoyl-coenzyme A were 390 µM and 55.54 min(-1) respectively. A docking model suggests that palmitoleoyl-coenzyme A and 1,2-dipalmitin occupy the same active site as trehalose 6,6'-dimycolate and trehalose 6'-monomycolate. The site-directed Ser126Ala mutation of the active site proved that this residue is involved in the catalytic activity of this enzyme. Although not proven conclusively for dormant stage of M. tuberculosis, our novel finding about the synthesis of TAGs by Ag85A strongly suggests that Ag85A may play a significant role in the formation of lipid storage bodies and thus also in the establishment and maintenance of a persistent tuberculosis infection.
Assuntos
Aciltransferases/metabolismo , Antígenos de Bactérias/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Metabolismo dos Lipídeos , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Aciltransferases/genética , Antígenos de Bactérias/genética , Domínio Catalítico , Diacilglicerol O-Aciltransferase/genética , Expressão Gênica , Cinética , Redes e Vias Metabólicas , Microscopia Eletrônica , Microscopia de Fluorescência , Modelos Moleculares , Simulação de Dinâmica Molecular , Mycobacterium smegmatis/citologia , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , TriglicerídeosRESUMO
Urothelial carcinoma of the urinary bladder (UCB) or bladder cancer remains a major health problem with high morbidity and mortality rates, especially in the western world. UCB is also associated with the highest cost per patient. In recent years numerous markers have been evaluated for suitability in UCB detection and surveillance. However, to date none of these markers can replace or even reduce the use of routine tools (cytology and cystoscopy). Our current study described UCB's extensive expression profile and highlighted the variations with normal bladder tissue. Our data revealed that JUP, PTGDR, KLRF1, MT-TC, and RNU6-135P are associated with prognosis in patients with UCB. The microarray expression data identified also S100A12, S100A8, and NAMPT as potential UCB biomarkers. Pathway analysis revealed that natural killer cell mediated cytotoxicity is the most involved pathway. Our analysis showed that S100A12 protein may be useful as a biomarker for early UCB detection. Plasma S100A12 has been observed in patients with UCB with an overall sensitivity of 90.5% and a specificity of 75%. S100A12 is highly expressed preferably in high-grade and high-stage UCB. Furthermore, using a panel of more than hundred urine samples, a prototype lateral flow test for the transcription factor Engrailed-2 (EN2) also showed reasonable sensitivity (85%) and specificity (71%). Such findings provide confidence to further improve and refine the EN2 rapid test for use in clinical practice. In conclusion, S100A12 and EN2 have shown potential value as biomarker candidates for UCB patients. These results can speed up the discovery of biomarkers, improving diagnostic accuracy and may help the management of UCB.
RESUMO
Tuberculosis (TB) is the leading global cause of death from a single infectious agent. Registered incidence rates are low, especially in low-resource countries with weak health systems, due to the disadvantages of current diagnostic techniques. A major effort is directed to develop a point-of-care (POC) platform to reduce TB deaths with a prompt and reliable low-cost technique. In the frame of the European POCKET Project, a novel POC platform for the direct and noninvasive detection of TB in human urine was developed. The photonic sensor chip is integrated in a disposable cartridge and is based on a highly sensitive Mach-Zehnder Interferometer (MZI) transducer combined with an on-chip spectral filter. The required elements for the readout are integrated in an instrument prototype, which allows real-time monitoring and data processing. In this work, the novel POC platform has been employed for the direct detection of lipoarabinomannan (LAM), a lipopolysaccharide found in the mycobacterium cell wall. After the optimization of several parameters, a limit of detection of 475 pg/mL (27.14 pM) was achieved using a direct immunoassay in undiluted human urine in less than 15 min. A final validation of the technique was performed using 20 clinical samples from TB patients and healthy donors, allowing the detection of TB in people regardless of HIV coinfection. The results show excellent correlation to those obtained with standard techniques. These promising results demonstrate the high sensitivity, specificity and applicability of our novel POC platform, which could be used during routine check-ups in developing countries.
Assuntos
Imunoensaio/métodos , Lipopolissacarídeos/urina , Tuberculose/diagnóstico , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Humanos , Limite de Detecção , Lipopolissacarídeos/imunologia , Mycobacterium tuberculosis/metabolismo , Sistemas Automatizados de Assistência Junto ao LeitoRESUMO
To study the antimicrobial function of immune cells ex vivo, cells are commonly cultivated under atmospheric oxygen concentrations (20-21%; normoxia), although the physiological oxygen conditions in vivo are significantly lower in most tissues. Especially during an acute infection, oxygen concentration locally decreases to hypoxic levels around or below 1%. The goal of this study was to investigate the effect of hypoxia on the activity of mast cells (MCs). MCs were cultivated for 3 or 24 h at 1% O2 in a hypoxia glove box and co-incubated with heat-inactivated Staphylococcus aureus. When incubating the cells for 24 h under hypoxia, the transcriptional regulator hypoxia-inducible factor 1α (HIF-1α) was stabilized and resulted in increased extracellular trap formation and decreased phagocytosis. Interestingly, while phagocytosis of fluorescent S. aureus bioparticles as well as the release of extracellular traps remained unaffected at 3 h hypoxia, the secretion of the prestored mediator histamine was increased under hypoxia alone. In contrast, the release of TNF-α was generally reduced at 3 h hypoxia. Microarray transcriptome analysis revealed 13 genes that were significantly downregulated in MCs comparing 3 h hypoxia versus normoxia. One interesting candidate is sec24, a member of the pre-budding complex of coat protein complex II (COPII), which is responsible for the anterograde transport of proteins from the ER to the Golgi apparatus. These data lead to the suggestion that de novo synthesized proteins including crucial factors, which are involved in the response to an acute infection like TNF-α, may eventually be retained in the ER under hypoxia. Importantly, the expression of HIF-1α was not altered at 3 h. Thus, our data exhibit a HIF-1α-independent reaction of MCs to short-term hypoxia. We hypothesize that MCs respond to short-term low oxygen levels in a HIF-1α-independent manner by downregulating the release of proinflammatory cytokines like TNF-α, thereby avoiding uncontrolled degranulation, which could lead to excessive inflammation and severe tissue damage.
RESUMO
For clinicians, Pseudomonas aeruginosa is a nightmare pathogen that is one of the top three causes of opportunistic human infections. Therapy of P. aeruginosa infections is complicated due to its natural high intrinsic resistance to antibiotics. Active efflux and decreased uptake of drugs due to cell wall/membrane permeability appear to be important issues in the acquired antibiotic tolerance mechanisms. Bacterial cell wall biosynthesis enzymes have been shown to be essential for pathogenicity of Gram-negative bacteria. However, the role of these targets in virulence has not been identified in P. aeruginosa. Here, we report knockout (k.o) mutants of six cell wall biosynthesis targets (murA, PA4450; murD, PA4414; murF, PA4416; ppiB, PA1793; rmlA, PA5163; waaA, PA4988) in P. aeruginosa PAO1, and characterized these in order to find out whether these genes and their products contribute to pathogenicity and virulence of P. aeruginosa. Except waaA k.o, deletion of cell wall biosynthesis targets significantly reduced growth rate in minimal medium compared to the parent strain. The k.o mutants showed exciting changes in cell morphology and colonial architectures. Remarkably, ΔmurF cells became grossly enlarged. Moreover, the mutants were also attenuated in vivo in a mouse infection model except ΔmurF and ΔwaaA and proved to be more sensitive to macrophage-mediated killing than the wild-type strain. Interestingly, the deletion of the murA gene resulted in loss of virulence activity in mice, and the virulence was restored in a plant model by unknown mechanism. This study demonstrates that cell wall targets contribute significantly to intracellular survival, in vivo growth, and pathogenesis of P. aeruginosa. In conclusion, these findings establish a link between cell wall targets and virulence of P. aeruginosa and thus may lead to development of novel drugs for the treatment of P. aeruginosa infection.
Assuntos
Antibacterianos/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Parede Celular/metabolismo , Técnicas de Silenciamento de Genes , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/genética , Animais , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Contagem de Colônia Microbiana , DNA Bacteriano/genética , Espaço Extracelular/química , Feminino , Genes Bacterianos , Vetores Genéticos/metabolismo , Lactuca/microbiologia , Lipopolissacarídeos/biossíntese , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/microbiologia , Camundongos , Modelos Biológicos , Mutação/genética , Peptidoglicano/biossíntese , Doenças das Plantas/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/patogenicidade , Doenças Respiratórias/microbiologia , Doenças Respiratórias/patologia , Virulência/efeitos dos fármacosRESUMO
Pyrazinamide (PZA) is still one of the key drugs used in current therapeutic regimens for tuberculosis (TB). Despite its importance for TB therapy, the mode of action of PZA remains unknown. PZA has to be converted to its active form pyrazinoic acid (POA) by the nicotinamidase PncA and is then excreted by an unknown efflux pump. At acidic conditions, POA is protonated to HPOA and is reabsorbed into the cell where it causes cellular damage. For a long time, it has been thought that PZA/POA has no defined target of action, but recent studies have shown that both PZA and POA have several different targets interfering with diverse biochemical pathways, especially in the NAD(+) and energy metabolism. PZA resistance seems to depend not only on a defective pyrazinamidase but is also rather a result of the interplay of many different enzyme targets and transport mechanisms.
Assuntos
Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Pirazinamida/uso terapêutico , Tuberculose Pulmonar/tratamento farmacológico , Humanos , Niacinamida/análogos & derivadosRESUMO
Tuberculosis is a major global health problem. In the middle of the last century several laboratories identified, developed and synthesized several substances which were active against Mycobacterium tuberculosis, the causative agent of the disease. In the 1980s the standard oral treatment regimen was introduced with isoniazid, rifampicin, pyrazinamide, and ethambutol. In combination with the DOTS strategy it was possible treat TB within 6-8 months. But with the emergence of drug resistant strains, the formerly successful regiment became ineffective for MDR and XDR TB patients. Even more alarming, the rapidly increasing HIV epidemic also increases the number of HIV-related TB. Facing these facts, it became evident that novel strategies and antibiotics were needed to treat the new forms of TB. But over the last 60 years no novel TB drug was developed or even in the drug pipeline. But during the last ten years several novel substances have been developed to combat the deadly disease. For the first time in decades the TB drug pipeline is filled again with several promising compounds and many of them have reached Phase II and Phase III clinical trials. Several laboratories and companies all over the world currently are developing and evaluating these substances. This review presents novel substances, which were for the first time exclusively developed for TB such as bedaquilines, nitroimidazoles and the diamine SQ109. We also summarize the present knowledge about enzymes and biosynthesis pathways which offer potential targets for drug discovery against M. tuberculosis.
Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Adamantano/análogos & derivados , Adamantano/química , Adamantano/farmacologia , Antituberculosos/uso terapêutico , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Diarilquinolinas/química , Diarilquinolinas/farmacologia , Enzimas/metabolismo , Etilenodiaminas/química , Etilenodiaminas/farmacologia , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Humanos , Terapia de Alvo Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Nitroimidazóis/farmacologia , Relação Quantitativa Estrutura-AtividadeRESUMO
3-Oxo-acyl-acyl carrier protein (ACP) reductase (FabG) plays a key role in the bacterial fatty acid synthesis II system in pathogenic microorganisms, which has been recognized as a potential drug target. FabG catalyzes reduction of a 3-oxo-acyl-ACP intermediate during the elongation cycle of fatty acid biosynthesis. Here, we report gene deletion experiments that support the essentiality of this gene in P. aeruginosa and the identification of a number of small molecule FabG inhibitors with IC50 values in the nanomolar to low micromolar range and good physicochemical properties. Structural characterization of 16 FabG-inhibitor complexes by X-ray crystallography revealed that the compounds bind at a novel allosteric site located at the FabG subunit-subunit interface. Inhibitor binding relies primarily on hydrophobic interactions, but specific hydrogen bonds are also observed. Importantly, the binding cavity is formed upon complex formation and therefore would not be recognized by virtual screening approaches. The structure analysis further reveals that the inhibitors act by inducing conformational changes that propagate to the active site, resulting in a displacement of the catalytic triad and the inability to bind NADPH.
Assuntos
Descoberta de Drogas , Oxirredutases/metabolismo , Pseudomonas aeruginosa/enzimologia , Sítio Alostérico , Antibacterianos/química , Antibacterianos/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Deleção de Genes , Concentração Inibidora 50 , Conformação Molecular , Oxirredutases/antagonistas & inibidores , Oxirredutases/química , Oxirredutases/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genéticaRESUMO
Leprosy is a chronic infectious disease and is a major source of morbidity in developing countries. Leprosy is caused by the obligate intracellular bacterium Mycobacterium leprae, which infects as primary target Schwann cells. Lepromatous leprosy exhibits multiple lesions of the skin, eyes, nerves, and lymph nodes. The sites of infection are characterized by the presence of foamy macrophages, fully packed with lipid droplets (LDs), which are induced by M. leprae. In the last years, it has become evident that M. tuberculosis imports lipids from foamy macrophages and is dependent on fatty acids for growth in infected macrophages. M. leprae seems to have similar mechanisms for scavenging lipids from the host. But due to the inability to culture M. leprae on laboratory media, research progresses only slowly. However, in the last years, substantial progress has been made in the field of lipid metabolism in M. leprae. Herein, we will present and summarize the lipid droplets formation and the metabolism of lipids during M. leprae infection.
RESUMO
Lipid inclusions play an important role in several pathological processes. Intracellular bacterial pathogens, such as members of the Mycobacterium and Chlamydia species are able to trigger the formation of lipid-laden foamy macrophages. Lipid droplet accumulation in the host constitutes a reservoir used by the bacilli for long-term persistence. Viruses need lipid droplets as assembly platform. We present the current knowledge about structural, functional and regulatory aspects of lipid inclusions.
Assuntos
Células Espumosas/microbiologia , Corpos de Inclusão/metabolismo , Lipídeos/química , Macrófagos/microbiologia , Animais , Chlamydia/fisiologia , Infecções por Chlamydia/metabolismo , Infecções por Chlamydia/microbiologia , Citosol/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Metabolismo dos Lipídeos , Lipídeos/genética , Mycobacterium/fisiologia , Infecções por Mycobacterium/metabolismo , Infecções por Mycobacterium/microbiologia , Viroses/metabolismo , Viroses/virologiaRESUMO
The enzymes of the antigen 85 complex (Ag85A, B, and C) possess mycolyltransferase activity and catalyze the synthesis of the most abundant glycolipid of the mycobacterial cell wall, the cord factor. The cord factor (trehalose 6,6'-dimycolate, TDM) is essential for the integrity of the mycobacterial cell wall and pathogenesis of the bacillus. Thus, TDM biosynthesis is regarded as a potential drug target for control of Mycobacterium tuberculosis infections. Trehalose 6,6'-dimycolate (TDM) is synthesized from two molecules of trehalose-6'-monomycolate (TMM) by antigen 85A. We report here a novel enzyme assay using the natural substrate TMM. The novel colorimetric assay is based on the quantification of glucose from the degradation of trehalose, which is the product from catalytic activity of antigen 85A. Using the new assay, K(m) and K(cat) were determined with values of 129.6+/-8.1 microM and 65.4+/-4.1 min(-1), respectively. This novel assay is also suitable for robust high-throughput screening (HTS) for compound library screening against mycolyltransferase (antigen 85A). The assay is significantly faster and more convenient to use than all assays currently in use. The assay has a very low coefficient of variance (0.04) in 96-well plates and shows a Z' factor of 0.67-0.73, indicating the robustness of the assay. In addition, this new assay is highly suitable for the quantification of total TMM of the mycobacterial cell envelope.