Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(3): 2033-2042, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38206169

RESUMO

Surface polarization under harsh electrochemical environments usually puts catalysts in a thermodynamically unstable state, which strictly hampers the thermodynamic stability of Pt-based catalysts in high-performance fuel cells. Here, we report a strategy by introducing electron buffers (variable-valence metals, M = Ti, V, Cr, and Nb) into intermetallic Pt alloy nanoparticle catalysts to suppress the surface polarization of Pt shells using the structurally ordered L10-M-PtFe as a proof of concept. Operando X-ray absorption spectra analysis suggests that with the potential increase, electron buffers, especially Cr, could facilitate an electron flow to form a electron-enriched Pt shell and thus weaken the surface polarization and tensile Pt strain. The best-performing L10-Cr-PtFe/C catalyst delivers superb oxygen reduction reaction (ORR) activity (mass activity = 1.41/1.02 A mgPt-1 at 0.9 V, rated power density = 14.0/9.2 W mgPt-1 in H2-air under a total Pt loading of 0.075/0.125 mgPt cm-2, respectively) and stability (20 mV voltage loss at 0.8 A cm-2 after 60,000 cycles of accelerated durability test) in a fuel cell cathode, representing one of the best reported ORR catalysts. Density functional theory calculations reveal that the optimized surface strain by introducing Cr on L10-PtFe/C accounts for the enhanced ORR activity, and the durability enhancement stems from the charge transfer contribution of Cr to the Pt shells and the increased kinetic energy barrier for Pt dissolution/Fe diffusion.

2.
J Am Chem Soc ; 146(18): 12496-12510, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38630640

RESUMO

Nuclear forward scattering (NFS) is a synchrotron-based technique relying on the recoil-free nuclear resonance effect similar to Mössbauer spectroscopy. In this work, we introduce NFS for in situ and operando measurements during electrocatalytic reactions. The technique enables faster data acquisition and better discrimination of certain iron sites in comparison to Mössbauer spectroscopy. It is directly accessible at various synchrotrons to a broad community of researchers and is applicable to multiple metal isotopes. We demonstrate the power of this technique with the hydrogen evolution mechanism of an immobilized iron porphyrin supported on carbon. Such catalysts are often considered as model systems for iron-nitrogen-carbon (FeNC) catalysts. Using in situ and operando NFS in combination with theoretical predictions of spectroscopic data enables the identification of the intermediate that is formed prior to the rate-determining step. The conclusions on the reaction mechanism can be used for future optimization of immobilized molecular catalysts and metal-nitrogen-carbon (MNC) catalysts.

3.
Angew Chem Int Ed Engl ; 63(26): e202400751, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38634352

RESUMO

Developing efficient and anti-corrosive oxygen reduction reaction (ORR) catalysts is of great importance for the applications of proton exchange membrane fuel cells (PEMFCs). Herein, we report a novel approach to prepare metal oxides supported intermetallic Pt alloy nanoparticles (NPs) via the reactive metal-support interaction (RMSI) as ORR catalysts, using Ni-doped cubic ZrO2 (Ni/ZrO2) supported L10-PtNi NPs as a proof of concept. Benefiting from the Ni migration during RMSI, the oxygen vacancy concentrations in the support are increased, leading to an electron enrichment of Pt. The optimal L10-PtNi-Ni/ZrO2-RMSI catalyst achieves remarkably low mass activity (MA) loss (17.8 %) after 400,000 accelerated durability test cycles in a half-cell and exceptional PEMFC performance (MA=0.76 A mgPt -1 at 0.9 V, peak power density=1.52/0.92 W cm-2 in H2-O2/-air, and 18.4 % MA decay after 30,000 cycles), representing the best reported Pt-based ORR catalysts without carbon supports. Density functional theory (DFT) calculations reveal that L10-PtNi-Ni/ZrO2-RMSI requires a lower energetic barrier for ORR than L10-PtNi-Ni/ZrO2 (direct loading), which is ascribed to a decreased Bader charge transfer between Pt and *OH, and the improved stability of L10-PtNi-Ni/ZrO2-RMSI compared to L10-PtNi-C can be contributed to the increased adhesion energy and Ni vacancy formation energy within the PtNi alloy.

4.
J Am Chem Soc ; 145(4): 2653-2660, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36661349

RESUMO

The increasing interest and need to shift to sustainable energy give rise to the utilization of fuel cell technologies in various applications. The challenging task of hydrogen storage and transport led to the development of liquid hydrogen carriers (LHCs) as fuels for direct LHC fuel cells, such as methanol in direct methanol fuel cells (DMFCs). Although simpler to handle, most direct LHC fuel cells suffer from durability and price issues derived from high catalysts' loadings and byproducts of the oxidation reaction of the fuel. Herein, we report on the development of direct hydroquinone fuel cells (DQFCs) based on anthraquinone-2,7-disulfonic acid (AQDS) as an LHC. We have shown that DQFC can operate with a continuous flow of quinone as a hydrogen carrier, outperforming the incumbent state-of-the-art DMFC by a factor of 3 in peak power density while completely removing the need for any catalyst at the anode. In addition, we demonstrate that quinone can be charged with protons in the same system, making it a reversible fuel cell system. We optimized the operating conditions and discussed the governing conditions to reach the best performance.

5.
Angew Chem Int Ed Engl ; 59(6): 2483-2489, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31774933

RESUMO

Aerogels are fascinating materials that can be used for a wide range of applications, one of which is electrocatalysis of the important oxygen reduction reaction. In their inorganic form, aerogels can have ultrahigh catalytic site density, high surface area, and tunable physical properties and chemical structures-important features in heterogeneous catalysis. Herein, we report on the synthesis and electrocatalytic properties of an iron-porphyrin aerogel. 5,10,15,20-(Tetra-4-aminophenyl)porphyrin (H2 TAPP) and FeII were used as building blocks of the aerogel, which was later heat-treated at 600 °C to enhance electronic conductivity and catalytic activity, while preserving its macrostructure. The resulting material has a very high concentration of atomically dispersed catalytic sites (9.7×1020  sites g-1 ) capable of catalyzing the oxygen reduction reaction in alkaline solution (Eonset =0.92 V vs. RHE, TOF=0.25 e- site-1 s-1 at 0.80 V vs. RHE).

6.
Inorg Chem ; 58(14): 8995-9003, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31247811

RESUMO

Recently, we reported on a series of aminomethylene-phosphonate (AMP) analogues, bearing one or two heterocyclic groups on the aminomethylene moiety, as promising Zn(II) chelators. Given the strong Zn(II) binding properties of these compounds, they may find useful applications in metal chelation therapy. With a goal of inhibiting the devastating oxidative damage caused by prion protein in prion diseases, we explored the most promising ligand, {bis[(1H-imidazol-4-yl)methyl]amino}methylphosphonic acid, AMP-(Im)2, 4, as an inhibitor of the oxidative reactivity associated with the Cu(II) complex of prion peptide fragment 84-114. Specifically, we first characterized the Cu(II) complex with AMP-(Im)2 by ultraviolet-visible spectroscopy and electrochemical measurements that indicated the high chemical and electrochemical stability of the complex. Potentiometric pH titration provided evidence of the formation of a stable 1:1 [Cu(II)-AMP-(Im)2]+ complex (ML), with successive binding of a second AMP-(Im)2 molecule yielding ML2 complex [Cu(II)-(AMP-(Im)2)2]+ (log K' = 15.55), and log ß' = 19.84 for ML2 complex. The CuN3O1 ML complex was demonstrated by X-ray crystallography, indicating the thermodynamically stable square pyramidal complex. Chelation of Cu(II) by 4 significantly reduced the oxidation potential of the former. CuCl2 and the 1:2 Cu:AMP-(Im)2 complex showed one-electron redox of Cu(II)/Cu(I) at 0.13 and -0.35 V, respectively. Indeed, 4 was found to be a potent antioxidant that at a 1:1:1 AMP-(Im)2:Cu(II)-PrP84-114 molar ratio almost totally inhibited the oxidation reaction of 4-methylcatechol. Circular dichroism data suggest that this antioxidant activity is due to formation of a ternary, redox inactive Cu(II)-Prp84-114-[AMP-(Im)2] complex. Future studies in prion disease animal models are warranted to assess the potential of 4 to inhibit the devastating oxidative damage caused by PrP.


Assuntos
Cobre/química , Isoxazóis/química , Príons/química , Tetrazóis/química , Modelos Moleculares , Oxirredução , Conformação Proteica
7.
Langmuir ; 32(44): 11672-11680, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27728764

RESUMO

The oxidation level and properties of reduced graphene oxides (rGOs) were fine-tuned using temperature-programmed reductive annealing. rGOs were annealed at different temperatures (from 500 to 1000 °C) in hydrogen to modulate their oxidation levels. The surface of the rGOs was fully characterized using electron paramagnetic resonance backed by Raman, X-ray diffraction, and chemical analysis measurements. These experiments were used to study the changes in the surface of the rGO, its surface functionalities, and its defects as a function of the reduction temperature. In addition, electrochemical measurements to quantify the oxidation level of the rGOs offer a simple tool to correlate the properties of rGOs with their structure. Finally, we explored the effect of different levels of reduction on conductivity, capacitance, and surface reactivity. This research offers simple methodological techniques and routes to control and characterize the oxidation level of bulk quantities of rGO.

8.
Angew Chem Int Ed Engl ; 54(47): 14080-4, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26429211

RESUMO

The future of affordable fuel cells strongly relies on the design of earth-abundant (non-platinum) catalysts for the electrochemical oxygen reduction reaction (ORR). However, the bottleneck in the overall process occurs therein. We have examined herein trivalent Mn, Fe, Co, Ni, and Cu complexes of ß-pyrrole-brominated corrole as ORR catalysts. The adsorption of these complexes on a high-surface-area carbon powder (BP2000) created a unique composite material, used for electrochemical measurements in acidic aqueous solutions. These experiments disclosed a clear dependence of the catalytic activity on the metal center of the complexes, in the order of Co>Fe>Ni>Mn>Cu. The best catalytic performance was obtained for the Co(III) corrole, whose onset potential was as positive as 0.81 V versus the reversible hydrogen electrode (RHE). Insight into the properties of these systems was gained by spectroscopic and computational characterization of the reduced and oxidized forms of the metallocorroles.

10.
J Phys Chem Lett ; 15(2): 481-489, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38190330

RESUMO

The development of durable platinum-group-metal-free oxygen reduction reaction (ORR) catalysts is a key research direction for enabling the wide use of fuel cells. Here, we use a combination of experimental measurements and density functional theory calculations to study the activity and durability of seven iron-based metallophthalocyanine (MPc) ORR catalysts that differ only in the identity of the substituent groups on the MPcs. While the MPcs show similar ORR activity, their durabilities as measured by the current decay half-life differ greatly. We find that the energy difference between the hydrogenated intermediate structure and the final demetalated structure (ΔEdemetalation) of the MPcs is linearly related to the degradation reaction barrier energy. Comparison to the degradation data for the previously studied metallocorrole systems suggested that ΔEdemetalation also serves as a descriptor for the corrole systems and that the high availability of protons at the active site due to the COOH group of the o-corrole decreases the durability.

11.
Nanoscale ; 16(23): 11174-11186, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38770663

RESUMO

This study delves into the critical role of customized materials design and synthesis methods in influencing the performance of electrocatalysts for the oxygen reduction reaction (ORR) in anion exchange membrane fuel cells (AEMFCs). It introduces a novel approach to obtain platinum-free (PGM-free) electrocatalysts based on the controlled integration of iron active sites onto the surface of silica nanoparticles (NPs) by using nitrogen-based surface ligands. These NPs are used as hard templates to form tailored nanostructured electrocatalysts with an improved iron dispersion into the carbon matrix. By utilizing a wide array of analytical techniques including infrared and X-ray photoelectron spectroscopy techniques, X-ray diffraction and surface area measurements, this work provides insight into the physical parameters that are critical for ORR electrocatalysis with PGM-free electrocatalysts. The new catalysts showed a hierarchical structure containing a large portion of graphitic zones which contribute to the catalyst stability. They also had a high electrochemically active site density reaching 1.47 × 1019 sites g-1 for SAFe_M_P1AP2 and 1.14 × 1019 sites g-1 for SEFe_M_P1AP2, explaining the difference in performance in fuel cell measurements. These findings underscore the potential impact of a controlled materials design for advancing green energy applications.

12.
Nanoscale ; 16(1): 438-446, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38083971

RESUMO

Fe-N-C catalysts are currently the leading candidates to replace Pt-based catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. To maximize their activity, it is necessary to optimize their structure to allow high active site density on one hand, and hierarchical porous structure that will allow good mass transport of reactants and products to and from the active sites on the other hand. Hence, the hierarchical structure of the catalyst plays an important role in the balance between the electrochemical active site density and the mass transport resistance. Aerogels were synthesized in this work to study the interplay between these two parameters. Aerogels are covalent organic frameworks with ultra-low density, high porosity, and large surface area. The relative ease of tuning the composition and pore structure of aerogels make them prominent candidates for catalysis. Herein, we report on a tunable Fe-N-C catalyst based on an Fe porphyrin aerogel, which shows high electrocatalytic oxygen reduction reaction activity with tunable hierarchical pore structure and studied the influence of the porous structure on the overall performance in proton exchange membrane fuel cells.

13.
Chem Commun (Camb) ; 59(36): 5439-5442, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37066703

RESUMO

New naphthocorrole ligands, display both the cavity size of corroles and the dianionic character of porphyrins. Nonaromatic and yet flaunting deceptively porphyrin-like optical spectra, they are readily accessible via a simple protocol.

14.
Nat Commun ; 14(1): 3934, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402710

RESUMO

Hydrogen produced from neutral seawater electrolysis faces many challenges including high energy consumption, the corrosion/side reactions caused by Cl-, and the blockage of active sites by Ca2+/Mg2+ precipitates. Herein, we design a pH-asymmetric electrolyzer with a Na+ exchange membrane for direct seawater electrolysis, which can simultaneously prevent Cl- corrosion and Ca2+/Mg2+ precipitation and harvest the chemical potentials between the different electrolytes to reduce the required voltage. In-situ Raman spectroscopy and density functional theory calculations reveal that water dissociation can be promoted with a catalyst based on atomically dispersed Pt anchored to Ni-Fe-P nanowires with a reduced energy barrier (by 0.26 eV), thus accelerating the hydrogen evolution kinetics in seawater. Consequently, the asymmetric electrolyzer exhibits current densities of 10 mA cm-2 and 100 mA cm-2 at voltages of 1.31 V and 1.46 V, respectively. It can also reach 400 mA cm-2 at a low voltage of 1.66 V at 80 °C, corresponding to the electricity cost of US$1.36 per kg of H2 ($0.031/kW h for the electricity bill), lower than the United States Department of Energy 2025 target (US$1.4 per kg of H2).

15.
Inorg Chem ; 51(8): 4694-706, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22458367

RESUMO

A series of divalent first row triflate complexes supported by the ligand tris(2-pyridylmethyl)amine (TPA) have been investigated as oxygen reduction catalysts for fuel cell applications. [(TPA)M(2+)](n+) (M = Mn, Fe, Co, Ni, and Cu) derivatives were synthesized and characterized by X-ray crystallography, cyclic voltammetry, NMR spectroscopy, magnetic susceptibility, IR spectroscopy, and conductance measurements. The stoichiometric and electrochemical O(2) reactivities of the series were examined. Rotating-ring disk electrode (RRDE) voltammetry was used to examine the catalytic activity of the complexes on a carbon support in acidic media, emulating fuel cell performance. The iron complex displayed a selectivity of 89% for four-electron conversion and demonstrated the fastest reaction kinetics, as determined by a kinetic current of 7.6 mA. Additionally, the Mn, Co, and Cu complexes all showed selective four-electron oxygen reduction (<28% H(2)O(2)) at onset potentials (~0.44 V vs RHE) comparable to state of the art molecular catalysts, while being straightforward to access synthetically and derived from nonprecious metals.


Assuntos
Fontes de Energia Elétrica , Compostos Organometálicos/química , Oxigênio/química , Piridinas/química , Elementos de Transição/química , Carbono/química , Eletroquímica , Polímeros de Fluorcarboneto/química
16.
ChemSusChem ; 15(8): e202200027, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35263034

RESUMO

As highlighted by the recent roadmaps from the European Union and the United States, water electrolysis is the most valuable high-intensity technology for producing green hydrogen. Currently, two commercial low-temperature water electrolyzer technologies exist: alkaline water electrolyzer (A-WE) and proton-exchange membrane water electrolyzer (PEM-WE). However, both have major drawbacks. A-WE shows low productivity and efficiency, while PEM-WE uses a significant amount of critical raw materials. Lately, the use of anion-exchange membrane water electrolyzers (AEM-WE) has been proposed to overcome the limitations of the current commercial systems. AEM-WE could become the cornerstone to achieve an intense, safe, and resilient green hydrogen production to fulfill the hydrogen targets to achieve the 2050 decarbonization goals. Here, the status of AEM-WE development is discussed, with a focus on the most critical aspects for research and highlighting the potential routes for overcoming the remaining issues. The Review closes with the future perspective on the AEM-WE research indicating the targets to be achieved.


Assuntos
Membranas Artificiais , Água , Ânions , Eletrólise , Hidrogênio
17.
Nanoscale ; 14(48): 18033-18040, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36445268

RESUMO

Aerogels are a very interesting group of materials owing to their unique physical and chemical properties. In the context of electrocatalysis, the focus has been on their physical properties, and they have been used primarily as catalyst supports so far. In this work, we synthesized porphyrin aerogels containing Ni and NiFe mixed metal materials and studied them as catalysts for the oxygen evolution reaction (OER). Different Ni : Fe ratios were synthesized and studied in electrochemical cells, and DFT calculations were conducted in order to gain insight into their behavior. The activity trends were dependent on the metal ratios and differ from known NiFeOOH materials due to the change in the oxidation states of the metals to higher numbers. Herein, we show that Ni and Fe have a synergistic effect on the OER, despite being structurally separated. They are connected electronically, though, through a large organic aromatic system that facilitates electron sharing between them. Among the mixed metal porphyrin aerogels, the best ratio was found to be Ni : Fe = 35 : 65, in contrast to oxide/oxyhydroxide materials in which a ratio of 80 : 20 was found to be ideal.

18.
ACS Appl Mater Interfaces ; 13(7): 8315-8323, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33587602

RESUMO

In an effort to develop durable, corrosion-resistant catalyst support materials for polymer electrolyte fuel cells, modified polymer-assisted deposition method was used to synthesize tungsten carbide (WC, WC1-x), which was later used as a support material for Pt-based oxygen reduction reaction catalyst, as an alternative for the corrosion-susceptible, carbon supports. The Pt-deposited tungsten carbide's corrosion-resistance, oxygen reduction reaction electrocatalysis, and durability were studied and compared to that of Pt/C. Bulk free carbon was found to be absent from the ceramic matrix which had particle size in the range of 2-25 nm. Tungsten carbide support appears to enhance the oxygen reduction activity on Pt, showing an increase in mass activity (nearly 2-fold at 0.85 V vs RHE) and specific activity (more than 7 times higher), alongside decrease in overpotential, in comparison to Pt/C. A significant increase in durability was also observed with the tungsten carbide-based system.

19.
ACS Appl Mater Interfaces ; 13(49): 58532-58538, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34870405

RESUMO

The development of precious group metal-free (PGM-free) catalysts for the oxygen reduction reaction is considered as the main thrust for the cost reduction of fuel cell technologies and their mass production. Within the PGM-free category, molecular catalysts offer an advantage over other heat-treated PGM-free catalysts owing to their well-defined structure, which enables further design of more active, selective, and durable catalysts. Even though non-heat-treated molecular catalysts with exceptional performance have been reported in the past, they were rarely tested in a fuel cell. Herein, we report on a molecular catalyst under alkaline conditions: fluorinated iron phthalocyanine (FeFPc) supported on cheap and commercially available high-surface area carbon─BP2000 (FeFPc@BP2000). It exhibits the highest activity ever reported for molecular catalysts under alkaline conditions in half-cells and fuel cells.

20.
ChemSusChem ; 14(8): 1886-1892, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33629811

RESUMO

In the search for replacement of the platinum-based catalysts for fuel cells, MN4 molecular catalysts based on abundant transition metals play a crucial role in modeling and investigation of the influence of the environment near the active site in platinum-group metal-free (PGM-free) oxygen reduction reaction (ORR) catalysts. To understand how the ORR activity of molecular catalysts can be controlled by the active site structure through modification by the pH and substituent functional groups, the change of the ORR onset potential and the electron number in a broad pH range was examined for three different metallocorroles. Experiments revealed a switch between two different ORR mechanisms and a change from 2e- to 4e- pathway in the pH range of 3.5-6. This phenomenon was shown by density functional theory (DFT) calculations to be related to the protonation of the nitrogen atoms and carboxylic acid groups on the corroles indicated by the pKa values of the protonation sites in the vicinity of the ORR active sites. Control of the electron-withdrawing nature of these groups characterized by the pKa values could switch the ORR from the H+ to e- rate-determining step mechanisms and from 2e- to 4e- ORR pathways and also controlled the durability of the corrole catalysts. The results suggest that protonation of the nitrogen atoms plays a vital role in both the ORR activity and durability for these materials and that pKa of the N atoms at the active sites can be used as a descriptor for the design of high-performance, durable PGM-free catalysts.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa