Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 31(11): 2058-2068, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34667116

RESUMO

Defense against genome invaders universally relies on RNA-guided immunity. Prokaryotic CRISPR-Cas and eukaryotic RNA interference pathways recognize targets by complementary base-pairing, which places the sequences of their guide RNAs at the center of self/nonself discrimination. Here, we explore the sequence space of PIWI-interacting RNAs (piRNAs), the genome defense of animals, and establish functional priority among individual sequences. Our results reveal that only the topmost abundant piRNAs are commonly present in every cell, whereas rare sequences generate cell-to-cell diversity in flies and mice. We identify a skewed distribution of sequence abundance as a hallmark of piRNA populations and show that quantitative differences of more than a 1000-fold are established by conserved mechanisms of biogenesis. Finally, our genomics analyses and direct reporter assays reveal that abundance determines function in piRNA-guided genome defense. Taken together, we identify an effective sequence space and untangle two classes of piRNAs that differ in complexity and function. The first class represents the topmost abundant sequences and drives silencing of genomic parasites. The second class sparsely covers an enormous sequence space. These rare piRNAs cannot function in every cell, every individual, or every generation but create diversity with potential for adaptation in the ongoing arms race with genome invaders.


Assuntos
RNA Guia de Cinetoplastídeos , Animais , Camundongos , RNA Guia de Cinetoplastídeos/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
2.
Nucleic Acids Res ; 50(15): e90, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35639929

RESUMO

The combination of genome-editing and epitope tagging provides a powerful strategy to study proteins with high affinity and specificity while preserving their physiological expression patterns. However, stably modifying endogenous genes in cells that do not allow for clonal selection has been challenging. Here, we present a simple and fast strategy to generate stable, endogenously tagged alleles in a non-transformed cell culture model. At the example of piwi in Drosophila ovarian somatic sheath cells, we show that this strategy enables the generation of an N-terminally tagged protein that emulates the expression level and subcellular localization of the wild type protein and forms functional Piwi-piRNA complexes. We further present a concise workflow to establish endogenously N-terminally and C-terminally tagged proteins, and knockout alleles through rapid selection of cell pools in fly and human models.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Edição de Genes , Genes Reporter , Humanos , Ovário/metabolismo , RNA Interferente Pequeno/metabolismo
3.
G3 (Bethesda) ; 10(4): 1283-1296, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32024668

RESUMO

The detection, discrimination, and behavioral responses to chemical cues in the environment can have marked effects on organismal survival and reproduction, eliciting attractive or aversive behavior. To gain insight into mechanisms mediating this hedonic valence, we applied thirty generations of divergent artificial selection for Drosophila melanogaster olfactory behavior. We independently selected for positive and negative behavioral responses to two ecologically relevant chemical compounds: 2,3-butanedione and cyclohexanone. We also tested the correlated responses to selection by testing behavioral responses to other odorants and life history traits. Measurements of behavioral responses of the selected lines and unselected controls to additional odorants showed that the mechanisms underlying responses to these odorants are, in some cases, differentially affected by selection regime and generalization of the response to other odorants was only detected in the 2,3-butanedione selection lines. Food consumption and lifespan varied with selection regime and, at times, sex. An analysis of gene expression of both selection regimes identified multiple differentially expressed genes. New genes and genes previously identified in mediating olfactory behavior were identified. In particular, we found functional enrichment of several gene ontology terms, including cell-cell adhesion and sulfur compound metabolic process, the latter including genes belonging to the glutathione S-transferase family. These findings highlight a potential role for glutathione S-transferases in the evolution of hedonic valence to ecologically relevant volatile compounds and set the stage for a detailed investigation into mechanisms by which these genes mediate attraction and aversion.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Comportamento Animal , Drosophila melanogaster/genética , Odorantes , Olfato/genética
4.
Nat Commun ; 10(1): 828, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783109

RESUMO

PIWI-interacting RNAs (piRNAs) are at the center of a small RNA-based immune system that defends genomes against the deleterious action of mobile genetic elements (transposons). PiRNAs are highly variable in sequence with extensive targeting potential. Their diversity is restricted by their preference to start with a Uridine (U) at the 5' most position (1U-bias), a bias that remains poorly understood. Here we uncover that the 1U-bias of Piwi-piRNAs is established by consecutive discrimination against all nucleotides but U, first during piRNA biogenesis and then upon interaction with Piwi's specificity loop. Sequence preferences during piRNA processing also restrict U across the piRNA body with the potential to directly impact target recognition. Overall, the uncovered signatures could modulate specificity and efficacy of piRNA-mediated transposon restriction, and provide a substrate for purifying selection in the ongoing arms race between genomes and their mobile parasites.


Assuntos
Proteínas Argonautas/genética , Proteínas de Drosophila/genética , RNA Interferente Pequeno/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas Argonautas/metabolismo , Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Mutação , Ovário/metabolismo , Domínios Proteicos , RNA Interferente Pequeno/genética , Uracila/metabolismo , Uridina/genética , Uridina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa