Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Xenobiotica ; : 1-13, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738708

RESUMO

1. Over the past two decades antibody-drug conjugates (ADCs) have emerged as a highly effective drug delivery technology. ADCs utilize a monoclonal antibody, a chemical linker, and a therapeutic payload to selectively deliver highly potent pharmaceutical agents to specific cell types.2. Challenges such as premature linker cleavage and clearance due to linker hydrophobicity have adversely impacted the stability and safety of ADCs. While there are various solutions to these challenges, our team has focused on replacement of hydrophobic ValCit linkers (cleaved by CatB) with Asn-containing linkers that are cleaved by lysosomal legumain.3. Legumain is abundantly present in lysosomes and is known to play a role in tumor microenvironment dynamics. Herein, we directly compare the lysosomal cleavage, cytotoxicity, plasma stability, and efficacy of a traditional cathepsin cleavable ADC to a matched Asn-containing legumain-cleavable ADC.4. We demonstrate that Asn-containing linker sequences are specifically cleaved by lysosomal legumain and that Asn-linked MMAE ADCs are broadly active against a variety of tumors, even those with low legumain expression. Finally, we show that AsnAsn-linked ADCs exhibit comparable or improved efficacy to traditional ValCit-linked ADCs. Our study paves the way for replacement of the traditional ValCit linker technology with more hydrophilic Asn-containing peptide linker sequences.

2.
Cells ; 12(6)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36980178

RESUMO

Parkinson's Disease (PD) is a neurodegenerative disorder characterized by motor symptoms that result from loss of nigrostriatal dopamine (DA) cells. While L-DOPA provides symptom alleviation, its chronic use often results in the development of L-DOPA-induced dyskinesia (LID). Evidence suggests that neuroplasticity within the serotonin (5-HT) system contributes to LID onset, persistence, and severity. This has been supported by research showing 5-HT compounds targeting 5-HT1A/1B receptors and/or the 5-HT transporter (SERT) can reduce LID. Recently, vortioxetine, a multimodal 5-HT compound developed for depression, demonstrated acute anti-dyskinetic effects. However, the durability and underlying pharmacology of vortioxetine's anti-dyskinetic actions have yet to be delineated. To address these gaps, we used hemiparkinsonian rats in Experiment 1, examining the effects of sub-chronic vortioxetine on established LID and motor performance. In Experiment 2, we applied the 5-HT1A antagonist WAY-100635 or 5-HT1B antagonist SB-224289 in conjunction with L-DOPA and vortioxetine to determine the contributions of each receptor to vortioxetine's effects. The results revealed that vortioxetine consistently and dose-dependently attenuated LID while independently, 5-HT1A and 5-HT1B receptors each partially reversed vortioxetine's effects. Such findings further support the promise of pharmacological strategies, such as vortioxetine, and indicate that broad 5-HT actions may provide durable responses without significant side effects.


Assuntos
Discinesia Induzida por Medicamentos , Levodopa , Ratos , Animais , Levodopa/efeitos adversos , Vortioxetina/farmacologia , Vortioxetina/uso terapêutico , Serotonina , Ratos Sprague-Dawley , Discinesia Induzida por Medicamentos/tratamento farmacológico
3.
Psychopharmacology (Berl) ; 239(7): 2119-2132, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35275226

RESUMO

Parkinson's disease is a neurodegenerative disease often characterized by motor deficits and most commonly treated with dopamine replacement therapy. Despite its benefits, chronic use of L-DOPA results in abnormal involuntary movements known as L-DOPA-induced dyskinesia. Growing evidence shows that with burgeoning dopamine cell loss, neuroplasticity in the serotonin system leads to the development of L-DOPA-induced dyskinesia through the unregulated uptake, conversion, and release of L-DOPA-derived dopamine into the striatum. Previous studies have shown that coincident 5-HT1A agonism and serotonin transporter inhibition may have anti-dyskinetic potential. Despite this, few studies have explicitly focused on targeting both 5-HT1A and the serotonin transporter. The present study compares the 5-HT compounds Vilazodone, YL-0919, and Vortioxetine which purportedly work as simultaneous 5-HT1A receptor agonists and SERT blockers. To do so, adult female Sprague Dawley rats were rendered hemiparkinsonian and treated daily for two weeks with L-DOPA to produce stable dyskinesia. The abnormal involuntary movements and forehand adjusting step tests were utilized as measurements for L-DOPA-induced dyskinesia and motor performance in a within-subjects design. Lesion efficacy was determined by analysis of striatal monoamines via high-performance liquid chromatography. Compounds selective for 5-HT1A/SERT target sites including Vilazodone and Vortioxetine significantly reduced L-DOPA-induced dyskinesia without compromising L-DOPA pro-motor efficacy. In contrast, YL-0919 failed to reduce L-DOPA-induced dyskinesia, with no effects on L-DOPA-related improvements. Collectively, this work supports pharmacological targeting of 5-HT1A/SERT to reduce L-DOPA-induced dyskinesia. Additionally, this further provides evidence for Vilazodone and Vortioxetine, FDA-approved compounds, as potential adjunct therapeutics for L-DOPA-induced dyskinesia management in Parkinson's patients.


Assuntos
Discinesia Induzida por Medicamentos , Doenças Neurodegenerativas , Animais , Antiparkinsonianos/farmacologia , Corpo Estriado , Modelos Animais de Doenças , Dopamina/farmacologia , Discinesia Induzida por Medicamentos/tratamento farmacológico , Feminino , Humanos , Levodopa/farmacologia , Oxidopamina , Piperidinas , Piridonas , Ratos , Ratos Sprague-Dawley , Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina , Cloridrato de Vilazodona/farmacologia , Cloridrato de Vilazodona/uso terapêutico , Vortioxetina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa