Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nucleic Acids Res ; 49(21): 12007-12016, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34230973

RESUMO

Large-scale chromosomal deletions are a prevalent and defining feature of cancer. A high degree of tumor-type and subtype specific recurrencies suggest a selective oncogenic advantage. However, due to their large size it has been difficult to pinpoint the oncogenic drivers that confer this advantage. Suitable functional genomics approaches to study the oncogenic driving capacity of large-scale deletions are limited. Here, we present an effective technique to engineer large-scale deletions by CRISPR-Cas9 and create isogenic cell line models. We simultaneously induce double-strand breaks (DSBs) at two ends of a chromosomal arm and select the cells that have lost the intermittent region. Using this technique, we induced large-scale deletions on chromosome 11q (65 Mb) and chromosome 6q (53 Mb) in neuroblastoma cell lines. A high frequency of successful deletions (up to 30% of selected clones) and increased colony forming capacity in the 11q deleted lines suggest an oncogenic advantage of these deletions. Such isogenic models enable further research on the role of large-scale deletions in tumor development and growth, and their possible therapeutic potential.


Assuntos
Sistemas CRISPR-Cas , DNA/metabolismo , Neuroblastoma/genética , Linhagem Celular Tumoral , Aberrações Cromossômicas , Deleção Cromossômica , Humanos
2.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769213

RESUMO

Germ cell tumors (GCTs) are considered to be highly curable; however, there are major differences in the outcomes related to histology and anatomical localization. GCTs originating from the testis are, overall, sensitive to platinum-based chemotherapy, whereas GCTs originating from the mediastinum show a worse response, which remains largely unexplained. Here, we address the differences among GCTs from two different anatomical locations (testicular versus mediastinal/extragonadal), with a specific focus on the role of the P53 pathway. It was recently shown that GCTs with TP53 mutations most often localize to the mediastinum. To elucidate the underlying mechanism, TP53 knock-out lines were generated in cisplatin-sensitive and -resistant clones of the representative 2102Ep cell line (wild-type TP53 testicular GCT) and NCCIT cell line (hemizygously mutated TP53, mutant TP53 mediastinal GCT). The full knock-out of TP53 in 2102Ep and resistant NCCIT resulted in an increase in cisplatin resistance, suggesting a contributing role for P53, even in NCCIT, in which P53 had been reported to be non-functional. In conclusion, these results suggest that TP53 mutations contribute to the cisplatin-resistant phenotype of mediastinal GCTs and, therefore, are a potential candidate for targeted treatment. This knowledge provides a novel model system to elucidate the underlying mechanism of clinical behavior and possible alternative treatment of the TP53 mutant and mediastinal GCTs.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Neoplasias do Mediastino/genética , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Testiculares/genética , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Neoplasias do Mediastino/tratamento farmacológico , Mutação/efeitos dos fármacos , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Testiculares/tratamento farmacológico
3.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502216

RESUMO

Background and case: An adolescent male presented with a second mediastinal tumor 1.5 years after treatment of a proven malignant germ-cell tumor in that location. The differential diagnosis included a recurrent germ-cell tumor or a non-germ cell malignancy. Serum tumor markers alpha-fetoprotein (AFP) and human chorionic gonadotrophin (HCG) were negative. The first biopsy was not informative, and the second biopsy gave a broad differential diagnosis including secondary non-germ cell malignancy using histology and immunohistochemistry. DNA methylation profiling, RNA sequencing, and targeted microRNA371a-3p profiling was subsequently performed, without a supportive result. After resection of the tumor the definitive diagnosis yielded two secondary non-germ cell malignancies in the form of a leiomyosarcoma and a solitary neuro endocrine carcinoma (NEC). In spite of the differences between the molecular profiles of the initial germ-cell tumor, the leiomyosarcoma and large-cell NEC are clonally related, as determined by the presence of identical chromosomal breakpoints. The copy number profiles suggest an initial polyploidization step, followed by various independent chromosomal gains and losses. This case demonstrates that germ-cell tumors must be evaluated carefully, including molecularly, in which the non-germ cell malignancy is negative for miR-371a-3p, both in tissue as well as in serum, in contrast to the primary tumor. We conclude that the patient presented with a primary type II mediastinal GCT and, a year and a half later, followed by a leiomyosarcoma and a large-cell NEC presenting as two secondary somatic-type malignancies clonally related to the original GCT. Conclusions: Malignant germ-cell tumors are known to recur as a somatic-type malignancy in very rare cases. This case report illustrates the challenges faced in defining the nature and clonality of the secondary somatic-type malignancies.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias do Mediastino/patologia , Recidiva Local de Neoplasia/patologia , Neoplasias Embrionárias de Células Germinativas/patologia , Adolescente , Humanos , Masculino , Neoplasias do Mediastino/genética , Neoplasias do Mediastino/terapia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/terapia , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/terapia , Prognóstico
4.
Stem Cell Reports ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38964325

RESUMO

Culture-acquired variants in human pluripotent stem cells (hPSCs) hinder their applications in research and clinic. However, the mechanisms that underpin selection of variants remain unclear. Here, through analysis of comprehensive karyotyping datasets from over 23,000 hPSC cultures of more than 1,500 lines, we explored how culture conditions shape variant selection. Strikingly, we identified an association of chromosome 1q gains with feeder-free cultures and noted a rise in its prevalence in recent years, coinciding with increased usage of feeder-free regimens. Competition experiments of multiple isogenic lines with and without a chromosome 1q gain confirmed that 1q variants have an advantage in feeder-free (E8/vitronectin), but not feeder-based, culture. Mechanistically, we show that overexpression of MDM4, located on chromosome 1q, drives variants' advantage in E8/vitronectin by alleviating genome damage-induced apoptosis, which is lower in feeder-based conditions. Our study explains condition-dependent patterns of hPSC aberrations and offers insights into the mechanisms of variant selection.

5.
Front Oncol ; 13: 1130034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895472

RESUMO

Introduction: Mutations affecting the RAS-MAPK pathway occur frequently in relapsed neuroblastoma tumors and are associated with response to MEK inhibition in vitro. However, these inhibitors alone do not lead to tumor regression in vivo, indicating the need for combination therapy. Methods and results: Via high-throughput combination screening, we identified that the MEK inhibitor trametinib can be combined with BCL-2 family member inhibitors, to efficiently inhibit growth of neuroblastoma cell lines with RAS-MAPK mutations. Suppressing the RAS-MAPK pathway with trametinib led to an increase in pro-apoptotic BIM, resulting in more BIM binding to anti-apoptotic BCL-2 family members. By favoring the formation of these complexes, trametinib treatment enhances sensitivity to compounds targeting anti-apoptotic BCL-2 family members. In vitro validation studies confirmed that this sensitizing effect is dependent on an active RAS-MAPK pathway. In vivo combination of trametinib with BCL-2 inhibitors led to tumor inhibition in NRAS-mutant and NF1-deleted xenografts. Conclusion: Together, these results show that combining MEK inhibition with BCL-2 family member inhibition could potentially improve therapeutic outcomes for RAS-MAPK-mutated neuroblastoma patients.

6.
J Clin Oncol ; 40(26): 3077-3087, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-35442716

RESUMO

PURPOSE: Cisplatin is the main systemic treatment modality for male type II germ cell tumors (GCTs). Although generally very effective, 5%-10% of patients suffer from cisplatin-resistant disease. Identification of the driving mechanisms of resistance will enable improved risk stratification and development of alternative treatments. METHODS: We developed and characterized cisplatin-resistant GCT cell line models and compared their molecular characteristics with patient samples with cisplatin resistance and/or a poor clinical outcome. Subsequently, the association between the overlapping genetic features and clinical data was assessed. Finally, we used Cox regression to determine the prognostic relevance of these features within the currently used risk classification. RESULTS: Gain of chromosome 3p25.3 was detected in all cisplatin-resistant cell lines, and copy number of this region correlated with the level of resistance (R = 0.96, P = 1.5e-04). Gain of this region was detected at low frequencies in primary tumors and at higher frequencies in relapsed and/or cisplatin-resistant tumors. Chromosome 3p25.3 gain was associated with shorter progression-free survival and overall survival, with the strongest association observed in nonseminomas excluding pure teratomas. 3p25.3 gain was more frequently observed in tumors with yolk sac tumor histology and predicted adverse outcome independent of the International Germ Cell Cancer Collaborative Group risk classification and the presence of TP53/MDM2 alterations. CONCLUSION: On the basis of both in vitro analyses and clinical data, we found 3p25.3 to be strongly associated with cisplatin resistance and poor clinical outcome in male type II GCTs. Using genomic profiling, 3p25.3 status could help to improve risk stratification in male patients with type II GCT. Further characterization of this locus and underlying mechanisms of resistance is warranted to guide development of novel treatment approaches for cisplatin-resistant disease.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Aberrações Cromossômicas , Cromossomos/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Masculino , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Testiculares/tratamento farmacológico , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologia
7.
Front Oncol ; 12: 929123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237330

RESUMO

Neuroblastoma is the most common extracranial solid tumor found in children and despite intense multi-modal therapeutic approaches, low overall survival rates of high-risk patients persist. Tumors with heterozygous loss of chromosome 11q and MYCN amplification are two genetically distinct subsets of neuroblastoma that are associated with poor patient outcome. Using an isogenic 11q deleted model system and high-throughput drug screening, we identify checkpoint kinase 1 (CHK1) as a potential therapeutic target for 11q deleted neuroblastoma. Further investigation reveals MYCN amplification as a possible additional biomarker for CHK1 inhibition, independent of 11q loss. Overall, our study highlights the potential power of studying chromosomal aberrations to guide preclinical development of novel drug targets and combinations. Additionally, our study builds on the growing evidence that DNA damage repair and replication stress response pathways offer therapeutic vulnerabilities for the treatment of neuroblastoma.

8.
Eur J Cancer ; 130: 168-181, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32224415

RESUMO

BACKGROUND: Children with cancer are in urgent need of new therapies, as approximately 25% of patients experience a relapse and 20% succumb to their disease. Moreover, the majority of survivors suffer from clinically relevant health problems. Repurposing of targeted agents developed for adult indications could provide novel therapeutic options for paediatric cancer patients. To prioritise targeted drugs for paediatric clinical development, we applied a systematic review methodology to develop a Target Actionability Review (TAR) strategy. These TARs assess the strength and completeness of published preclinical proof-of-concept (PoC) data by structured critical appraisal of and summarising the available scientific literature for a specific target (pathway) and the associated drugs in paediatric tumours. METHODS: A sensitive literature search in PubMed was performed and relevant papers were identified. For each paper, the individual experimental findings were extracted, marked for paediatric tumour type and categorised into nine separate PoC data modules. Each experimental finding was scored for experimental outcome and quality independently by two reviewers; discrepancies were assessed by a third reviewer and resolved by adjudication. Scores corresponding to one PoC module were merged for each tumour type and visualised in a heat map matrix in the publicly available R2 data portal [r2.amc.nl]. RESULTS AND CONCLUSIONS: To test our TAR methodology, we conducted a pilot study on MDM2 and TP53. The heat map generated from analysis of 161 publications provides a rationale to support drug development in specific paediatric solid and brain tumour types. Furthermore, our review highlights tumour types where preclinical data are incomplete or lacking and for which additional preclinical testing is advisable.


Assuntos
Neoplasias/epidemiologia , Estudo de Prova de Conceito , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pediatria
9.
Cancer Res ; 78(21): 6297-6307, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30115695

RESUMO

Mutations affecting the RAS-MAPK pathway frequently occur in relapsed neuroblastoma tumors, which suggests that activation of this pathway is associated with a more aggressive phenotype. To explore this hypothesis, we generated several model systems to define a neuroblastoma RAS-MAPK pathway signature. Activation of this pathway in primary tumors indeed correlated with poor survival and was associated with known activating mutations in ALK and other RAS-MAPK pathway genes. Integrative analysis showed that mutations in PHOX2B, CIC, and DMD were also associated with an activated RAS-MAPK pathway. Mutation of PHOX2B and deletion of CIC in neuroblastoma cell lines induced activation of the RAS-MAPK pathway. This activation was independent of phosphorylated ERK in CIC knockout systems. Furthermore, deletion of CIC caused a significant increase in tumor growth in vivo These results show that the RAS-MAPK pathway is involved in tumor progression and establish CIC as a powerful tumor suppressor that functions downstream of this pathway in neuroblastoma.Significance: This work identifies CIC as a powerful tumor suppressor affecting the RAS-MAPK pathway in neuroblastoma and reinforces the importance of mutation-driven activation of this pathway in cancer. Cancer Res; 78(21); 6297-307. ©2018 AACR.


Assuntos
Sistema de Sinalização das MAP Quinases , Neuroblastoma/genética , Proteínas Repressoras/genética , Animais , Linhagem Celular Tumoral , Análise por Conglomerados , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes ras , Genoma Humano , Genômica , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Knockout , Camundongos Nus , Mutação , Recidiva Local de Neoplasia/genética , Transplante de Neoplasias , Neuroblastoma/patologia , Fenótipo , Fosforilação , Prognóstico , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Resultado do Tratamento
10.
Nat Genet ; 47(8): 864-71, 2015 08.
Artigo em Inglês | MEDLINE | ID: mdl-26121087

RESUMO

The majority of patients with neuroblastoma have tumors that initially respond to chemotherapy, but a large proportion will experience therapy-resistant relapses. The molecular basis of this aggressive phenotype is unknown. Whole-genome sequencing of 23 paired diagnostic and relapse neuroblastomas showed clonal evolution from the diagnostic tumor, with a median of 29 somatic mutations unique to the relapse sample. Eighteen of the 23 relapse tumors (78%) showed mutations predicted to activate the RAS-MAPK pathway. Seven of these events were detected only in the relapse tumor, whereas the others showed clonal enrichment. In neuroblastoma cell lines, we also detected a high frequency of activating mutations in the RAS-MAPK pathway (11/18; 61%), and these lesions predicted sensitivity to MEK inhibition in vitro and in vivo. Our findings provide a rationale for genetic characterization of relapse neuroblastomas and show that RAS-MAPK pathway mutations may function as a biomarker for new therapeutic approaches to refractory disease.


Assuntos
Sistema de Sinalização das MAP Quinases/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Recidiva Local de Neoplasia/genética , Neuroblastoma/genética , Proteínas ras/genética , Quinase do Linfoma Anaplásico , Animais , Benzimidazóis/farmacologia , Western Blotting , Linhagem Celular Tumoral , Criança , Pré-Escolar , Aberrações Cromossômicas , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Lactente , Masculino , Camundongos SCID , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Fosforilação/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa