Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biochem Biophys Res Commun ; 502(4): 450-455, 2018 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-29859934

RESUMO

It is widely believed that if a high number of genes are found for any tRNA in a rapidly replicating bacteria, then the cytoplasmic levels of that tRNA will be high and an open reading frame containing a higher frequency of the complementary codon will be translated faster. This idea is based on correlations between the number of tRNA genes, tRNA concentration and the frequency of codon usage observed in a limited number of strains as well as from the fact that artificially changing the number of tRNA genes alters translation efficiency and consequently the amount of properly folded protein synthesized. tRNA gene number may greatly vary in a genome due to duplications, deletions and lateral transfer which in turn would alter the levels and functionality of many proteins. Such changes are potentially deleterious for fitness and as a result it is expected that changes in tRNA gene numbers should be accompanied by a modification of the frequency of codon usage. In contrast to this model, when comparing the number of tRNA genes and the frequency of codon usage of several Salmonella enterica and Escherichia coli strains we found that changes in the number of tRNA genes are not correlated to changes in codon usage. Furthermore, these changes are not correlated with a change in the efficiency of codon translation. These results suggest that once a genome gains or loses tRNA genes, it responds by modulating the concentrations of tRNAs rather than modifying its frequency of codon usage.


Assuntos
Códon/genética , Enterobacteriaceae/genética , Genes Bacterianos , Escherichia coli/genética , Dosagem de Genes , Biossíntese de Proteínas , RNA Bacteriano/genética , RNA de Transferência/genética , Salmonella enterica/genética
2.
Mol Microbiol ; 101(4): 545-58, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27169680

RESUMO

Transfer RNAs (tRNAs) are the macromolecules that transfer activated amino acids from aminoacyl-tRNA synthetases to the ribosome, where they are used for the mRNA guided synthesis of proteins. Transfer RNAs are ancient molecules, perhaps even predating the existence of the translation machinery. Albeit old, these molecules are tremendously conserved, a characteristic that is well illustrated by the fact that some bacterial tRNAs are efficient and specific substrates of eukaryotic aminoacyl-tRNA synthetases and ribosomes. Considering their ancient origin and high structural conservation, it is not surprising that tRNAs have been hijacked during evolution for functions outside of translation. These roles beyond translation include synthetic, regulatory and information functions within the cell. Here we provide an overview of the non-canonical roles of tRNAs and their mimics in bacteria, and discuss some of the common themes that arise when comparing these different functions.


Assuntos
Bactérias/genética , RNA de Transferência/fisiologia , Aminoacil-tRNA Sintetases/genética , RNA Bacteriano/química , RNA Bacteriano/fisiologia , RNA de Transferência/química
3.
PLoS Genet ; 10(8): e1004553, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25144653

RESUMO

Elongation factor P (EF-P) is required for the efficient synthesis of proteins with stretches of consecutive prolines and other motifs that would otherwise lead to ribosome pausing. However, previous reports also demonstrated that levels of most diprolyl-containing proteins are not altered by the deletion of efp. To define the particular sequences that trigger ribosome stalling at diprolyl (PPX) motifs, we used ribosome profiling to monitor global ribosome occupancy in Escherichia coli strains lacking EF-P. Only 2.8% of PPX motifs caused significant ribosomal pausing in the Δefp strain, with up to a 45-fold increase in ribosome density observed at the pausing site. The unexpectedly low fraction of PPX motifs that produce a pause in translation led us to investigate the possible role of sequences upstream of PPX. Our data indicate that EF-P dependent pauses are strongly affected by sequences upstream of the PPX pattern. We found that residues as far as 3 codons upstream of the ribosomal peptidyl-tRNA site had a dramatic effect on whether or not a particular PPX motif triggered a ribosomal pause, while internal Shine Dalgarno sequences upstream of the motif had no effect on EF-P dependent translation efficiency. Increased ribosome occupancy at particular stall sites did not reliably correlate with a decrease in total protein levels, suggesting that in many cases other factors compensate for the potentially deleterious effects of stalling on protein synthesis. These findings indicate that the ability of a given PPX motif to initiate an EF-P-alleviated stall is strongly influenced by its local context, and that other indirect post-transcriptional effects determine the influence of such stalls on protein levels within the cell.


Assuntos
Fatores de Alongamento de Peptídeos/genética , Biossíntese de Proteínas , Aminoacil-RNA de Transferência/genética , Códon , Escherichia coli/genética , Ribossomos/genética
4.
J Biol Chem ; 289(41): 28160-71, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25148683

RESUMO

Ribosome stalling during translation can be caused by a number of characterized mechanisms. However, the impact of elongation stalls on protein levels is variable, and the reasons for this are often unclear. To investigate this relationship, we examined the bacterial translation elongation factor P (EF-P), which plays a critical role in rescuing ribosomes stalled at specific amino acid sequences including polyproline motifs. In previous proteomic analyses of both Salmonella and Escherichia coli efp mutants, it was evident that not all proteins containing a polyproline motif were dependent on EF-P for efficient expression in vivo. The α- and ß-subunits of ATP synthase, AtpA and AtpD, are translated from the same mRNA transcript, and both contain a PPG motif; however, proteomic analysis revealed that AtpD levels are strongly dependent on EF-P, whereas AtpA levels are independent of EF-P. Using these model proteins, we systematically determined that EF-P dependence is strongly influenced by elements in the 5'-untranslated region of the mRNA. By mutating either the Shine-Dalgarno sequence or the start codon, we find that EF-P dependence correlates directly with the rate of translation initiation where strongly expressed proteins show the greatest dependence on EF-P. Our findings demonstrate that polyproline-induced stalls exert a net effect on protein levels only if they limit translation significantly more than initiation. This model can be generalized to explain why sequences that induce pauses in translation elongation to, for example, facilitate folding do not necessarily exact a penalty on the overall production of the protein.


Assuntos
Escherichia coli/genética , Elongação Traducional da Cadeia Peptídica/genética , Iniciação Traducional da Cadeia Peptídica/genética , Ribossomos/genética , Salmonella typhimurium/genética , Regiões 5' não Traduzidas , Sequência de Bases , Escherichia coli/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cinética , Modelos Genéticos , Dados de Sequência Molecular , Peptídeos/genética , Peptídeos/metabolismo , Ribossomos/metabolismo , Salmonella typhimurium/metabolismo
5.
J Biol Chem ; 288(6): 4416-23, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23277358

RESUMO

Post-translational modification of bacterial elongation factor P (EF-P) with (R)-ß-lysine at a conserved lysine residue activates the protein in vivo and increases puromycin reactivity of the ribosome in vitro. The additional hydroxylation of EF-P at the same lysine residue by the YfcM protein has also recently been described. The roles of modified and unmodified EF-P during different steps in translation, and how this correlates to its physiological role in the cell, have recently been linked to the synthesis of polyproline stretches in proteins. Polysome analysis indicated that EF-P functions in translation elongation, rather than initiation as proposed previously. This was further supported by the inability of EF-P to enhance the rate of formation of fMet-Lys or fMet-Phe, indicating that the role of EF-P is not to specifically stimulate formation of the first peptide bond. Investigation of hydroxyl-(ß)-lysyl-EF-P showed 30% increased puromycin reactivity but no differences in dipeptide synthesis rates when compared with the ß-lysylated form. Unlike disruption of the other genes required for EF-P modification, deletion of yfcM had no phenotypic consequences in Salmonella. Taken together, our findings indicate that EF-P functions in translation elongation, a role critically dependent on post-translational ß-lysylation but not hydroxylation.


Assuntos
Proteínas de Bactérias/metabolismo , Lisina/metabolismo , Elongação Traducional da Cadeia Peptídica/fisiologia , Fatores de Alongamento de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Salmonella enterica/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroxilação/fisiologia , Lisina/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Fatores de Alongamento de Peptídeos/genética , Salmonella enterica/genética
6.
Front Microbiol ; 13: 1042675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532460

RESUMO

Introduction: The response of enterobacteria to oxidative stress is usually considered to be regulated by transcription factors such as OxyR and SoxR. Nevertheless, several reports have shown that under oxidative stress the levels, modification and aminoacylation of tRNAs may be altered suggesting a role of codon bias in regulation of gene expression under this condition. Methods: In order to characterize the effects of oxidative stress on translation elongation we constructed a library of 61 plasmids, each coding for the green fluorescent protein (GFP) translationally fused to a different set of four identical codons. Results: Using these reporters, we observed that GFP production levels vary widely (~15 fold) when Escherichia coli K-12 is cultured in minimal media as a consequence of codon choice variations. When bacteria are cultured under oxidative stress caused by paraquat the levels of GFP produced by most clones is reduced and, in contrast to control conditions, the range of GFP levels is restricted to a ~2 fold range. Restricting elongation of particular sequences does not increase the range of GFP production under oxidative stress, but altering translation initiation rates leads to an increase in this range. Discussion: Altogether, our results suggest that under normal conditions the speed of translation elongation is in the range of the speed of initiation and, consequently, codon choice impacts the speed of protein synthesis. In contrast, under oxidative stress translation initiation becomes much slower than elongation, limiting the speed of translation such that codon choice has at most only subtle effects on the overall output of translation.

7.
JCI Insight ; 6(15)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34369387

RESUMO

In chronic lymphocytic leukemia (CLL) and very likely all cancer types, extracellular vesicles (EVs) are a common mechanism by which intercellular messages are communicated between normal, diseased, and transformed cells. Studies of EVs in CLL and other cancers have great variability and often lack reproducibility. For CLL patient plasma and cell lines, we sought to characterize current approaches used in isolating EV products and understand whether cell culture-conditioned media or complex biological fluids confound results. Utilizing nanoparticle tracking analysis, protein quantification, and electron microscopy, we show that ultracentrifugation with an OptiPrep cushion can effectively minimize contaminants from starting materials including plasma and conditioned media of CLL cell lines grown in EV-depleted complete RPMI media but not grown in the serum-free media AIM V commonly used in CLL experimental work. Moreover, we confirm the benefit of including 25 mM trehalose in PBS during EV isolation steps to reduce EV aggregation, to preserve function for downstream applications and characterization. Furthermore, we report the highest particles/µg EVs were obtained from our CLL cell lines utilizing the CELLine bioreactor flask. Finally, we optimized a proliferation assay that offers a functional evaluation of our EVs with minimal sample requirements.


Assuntos
Técnicas de Química Analítica/métodos , Vesículas Extracelulares , Proteínas/isolamento & purificação , Linhagem Celular , Meios de Cultivo Condicionados , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Humanos , Leucemia Linfocítica Crônica de Células B , Microscopia Eletrônica/métodos , Nanopartículas , Imagem Individual de Molécula/instrumentação , Imagem Individual de Molécula/métodos
8.
Blood Adv ; 5(16): 3152-3162, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34424320

RESUMO

Antibody-drug conjugates directed against tumor-specific targets have allowed targeted delivery of highly potent chemotherapy to malignant cells while sparing normal cells. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncofetal protein with limited expression on normal adult tissues and is overexpressed on the surface of malignant cells in mantle cell lymphoma, acute lymphocytic leukemia with t(1;19)(q23;p13) translocation, and chronic lymphocytic leukemia. This differential expression makes ROR1 an attractive target for antibody-drug conjugate therapy, especially in malignancies such as mantle cell lymphoma and acute lymphocytic leukemia, in which systemic chemotherapy remains the gold standard. Several preclinical and phase 1 clinical studies have established the safety and effectiveness of anti-ROR1 monoclonal antibody-based therapies. Herein we describe a humanized, first-in-class anti-ROR1 antibody-drug conjugate, huXBR1-402-G5-PNU, which links a novel anti-ROR1 antibody (huXBR1-402) to a highly potent anthracycline derivative (PNU). We found that huXBR1-402-G5-PNU is cytotoxic to proliferating ROR1+ malignant cells in vitro and suppressed leukemia proliferation and extended survival in multiple models of mice engrafted with human ROR1+ leukemia. Lastly, we show that the B-cell lymphoma 2 (BCL2)-dependent cytotoxicity of huXBR1-402-G5-PNU can be leveraged by combined treatment strategies with the BCL2 inhibitor venetoclax. Together, our data present compelling preclinical evidence for the efficacy of huXBR1-402-G5-PNU in treating ROR1+ hematologic malignancies.


Assuntos
Neoplasias Hematológicas , Imunoconjugados , Leucemia Linfocítica Crônica de Células B , Linfoma de Célula do Manto , Animais , Anticorpos Monoclonais , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Camundongos
9.
Methods Enzymol ; 645: 79-107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33565979

RESUMO

Recent advances in live cell imaging allow investigating processes that take place over the entire cell volume with unprecedented time and spatial resolution. Here we describe a protocol to study intercellular communication, including extracellular vesicle exchange, between cancer cells and their microenvironment, using lattice light sheet fluorescence microscopy. While the described protocol is intended to study the interactions between chronic lymphocytic leukemia cells and bone marrow stromal cells, many components of it can be applied to study other cancers of hematopoietic or solid tumor origin, as well as to characterize other modalities of intercellular communication.


Assuntos
Vesículas Extracelulares , Leucemia Linfocítica Crônica de Células B , Técnicas de Cocultura , Humanos , Microscopia de Fluorescência , Células Estromais , Microambiente Tumoral
10.
Front Genet ; 11: 856, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014012

RESUMO

Bacterial oxidative stress responses are generally controlled by transcription factors that modulate the synthesis of RNAs with the aid of some sRNAs that control the stability, and in some cases the translation, of specific mRNAs. Here, we report that oxidative stress additionally leads to inactivation of tRNAGly in Escherichia coli, inducing a series of physiological changes. The observed inactivation of tRNAGly correlated with altered efficiency of translation of Gly codons, suggesting a possible mechanism of translational control of gene expression under oxidative stress. Changes in translation also depended on the availability of glycine, revealing a mechanism whereby bacteria modulate the response to oxidative stress according to the prevailing metabolic state of the cells.

11.
mBio ; 7(5)2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27624127

RESUMO

UNLABELLED: Under conditions of tight coupling between translation and transcription, the ribosome enables synthesis of full-length mRNAs by preventing both formation of intrinsic terminator hairpins and loading of the transcription termination factor Rho. While previous studies have focused on transcription factors, we investigated the role of Escherichia coli elongation factor P (EF-P), an elongation factor required for efficient translation of mRNAs containing consecutive proline codons, in maintaining coupled translation and transcription. In the absence of EF-P, the presence of Rho utilization (rut) sites led to an ~30-fold decrease in translation of polyproline-encoding mRNAs. Coexpression of the Rho inhibitor Psu fully restored translation. EF-P was also shown to inhibit premature termination during synthesis and translation of mRNAs encoding intrinsic terminators. The effects of EF-P loss on expression of polyproline mRNAs were augmented by a substitution in RNA polymerase that accelerates transcription. Analyses of previously reported ribosome profiling and global proteomic data identified several candidate gene clusters where EF-P could act to prevent premature transcription termination. In vivo probing allowed detection of some predicted premature termination products in the absence of EF-P. Our findings support a model in which EF-P maintains coupling of translation and transcription by decreasing ribosome stalling at polyproline motifs. Other regulators that facilitate ribosome translocation through roadblocks to prevent premature transcription termination upon uncoupling remain to be identified. IMPORTANCE: Bacterial mRNA and protein syntheses are often tightly coupled, with ribosomes binding newly synthesized Shine-Dalgarno sequences and then translating nascent mRNAs as they emerge from RNA polymerase. While previous studies have mainly focused on the roles of transcription factors, here we investigated whether translation factors can also play a role in maintaining coupling and preventing premature transcription termination. Using the polyproline synthesis enhancer elongation factor P, we found that rapid translation through potential stalling motifs is required to provide efficient coupling between ribosomes and RNA polymerase. These findings show that translation enhancers can play an important role in gene expression by preventing premature termination of transcription.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Alongamento de Peptídeos/metabolismo , Biossíntese de Proteínas , Transcrição Gênica , Peptídeos/metabolismo , RNA Mensageiro/metabolismo
12.
FEBS Lett ; 586(16): 2232-8, 2012 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-22683511

RESUMO

In archaea and eukaryotes aminoacyl-tRNA synthetases (aaRSs) associate in multi-synthetase complexes (MSCs), however the role of such MSCs in translation is unknown. MSC function was investigated in vivo in the archaeon Thermococcus kodakarensis, wherein six aaRSs were affinity co-purified together with several other factors involved in protein synthesis, suggesting that MSCs may interact directly with translating ribosomes. In support of this hypothesis, the aminoacyl-tRNA synthetase (aaRS) activities of the MSC were enriched in isolated T. kodakarensis polysome fractions. These data indicate that components of the archaeal protein synthesis machinery associate into macromolecular assemblies in vivo and provide the potential to increase translation efficiency by limiting substrate diffusion away from the ribosome, thus facilitating rapid recycling of tRNAs.


Assuntos
Aminoacil-tRNA Sintetases/química , Ligases/química , Ribossomos/química , Thermococcus/enzimologia , Polirribossomos/química , Ligação Proteica , Biossíntese de Proteínas , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , RNA de Transferência/química , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa