RESUMO
Melatonin (MEL) orchestrates daily and seasonal rhythms (eg, locomotion, sleep/wake cycles, and migration among other rhythms) in diverse organisms. We investigated the effects of pharmacological doses (0.03-1 mM) of exogenous MEL intake in the cockroach, Periplaneta americana, on locomotor activity. As per os MEL concentration increased, cockroach locomotor rhythm in light-dark (LD) cycles became more synchronized. The ratio of night activity to 24-h activity increased and the acrophase (peak) slightly advanced. MEL application also influenced total activity bouts in the free-running rhythm. Since MEL slightly influenced τ in the free-running rhythms, it is not a central element of the circadian pacemaker but must influence mutual coupling of multi-oscillatory system components. Arylalkylamine N-acetyltransferase (aaNAT) regulates enzymatic production of MEL. aaNAT activities vary in circadian rhythms, and the immunoreactive aaNAT (aaNAT-ir) is colocalized with the key clock proteins cycle (CYC)-ir and pigment-dispersing factor (PDF)-ir These are elements of the central pacemaker and its output pathway as well as other circadian landmarks such as the anterior and posterior optic commissures (AOC and POC, respectively). It also partially shares immunohistochemical reactivity with PER-ir and DBT-ir neurons. We analyzed the role of Pamericana aaNAT1 (PaaaNAT1) (AB106562.1) by injecting dsRNAaaNAT1 . qPCR showed a decrease in accumulations of mRNAs encoding PaaaNAT1. The injections led to arrhythmicity in LD cycles and the arrhythmicity persisted in constant dark (DD). Continuous administration of MEL resynchronized the rhythm after arrhythmicity was induced by dsRNAaaNAT1 injection, suggesting that PaaaNAT is the key regulator of the circadian system in the cockroach via MEL production. PaaaNAT1 contains putative E-box regions which may explain its tight circadian control. The receptor that mediates MEL function is most likely similar to the mammalian MT2, because injecting the competitive MT2 antagonist luzindole blocked MEL function, and MEL injection after luzindole treatment restored MT function. Human MT2-ir was localized in the circadian neurons in the cockroach brain and subesophageal ganglion. We infer that MEL and its synthesizing enzyme, aaNAT, constitute at least one circadian output pathway of locomotor activity either as a distinct route or in association with PDF system.
Assuntos
Melatonina , Periplaneta , Animais , Arilalquilamina N-Acetiltransferase , Ritmo Circadiano/fisiologia , Humanos , Locomoção , Melatonina/metabolismo , Periplaneta/metabolismoRESUMO
Vitellogenins (Vgs) are yolk protein precursors that are regulated by juvenile hormone (JH) and/or 20-hydroxyecdysone (20E) in insects. JH acts as the principal gonadotropin that stimulates vitellogenesis in hemimetabolous insects. In this study, we cloned and characterized the Periplaneta americana Vitellogenin 2 (Vg2) promoter. Multiple sites for putative transcription factor binding were predicted for the 1,804 bp Vg2 promoter region, such as the Broad-Complex, ecdysone response element (EcRE), GATA, Hairy, JH response element (JHRE), and Methoprene (Met)-binding motif, among others. Luciferase reporter assay has identified that construct -177 bp is enough to support JH III induction but not 20E suppression. This 38 bp region (from -177 to -139 bp) contains two conserved response element half-sites separated by 2 nucleotides spacer (DR2) and is designated as Vg2RE (-168GAGTCACGGAGTCGCCGCTG-149). Mutation assay and luciferase assay data using mutated constructs verified the crucial role of G residues in Vg2RE for binding the isolated fat body nuclear protein. In Sf9 cells, a luciferase reporter placed under the control of a minimal promoter containing Vg2RE was induced by JH III in a dose- and time-dependent manner. Nuclear proteins isolated from previtellogenic female fat body cells bound to Vg2RE, and this binding was outcompeted by a 50-fold excess of cold Drosophila melanogaster DR4 and Galleria mellonella JH binding protein response elements (Chorion factor-I/Ultraspiracle). Affinity pull-down experiment with nuclear extracts of previtellogenic female fat body, using 31-bp probe Vg2RE as bait, yielded a 71 kDa candidate nuclear protein that may mediate the regulatory action of the JH III.
RESUMO
Although the regulation of vitellogenesis in insects has been mainly discussed in terms of 'classical' lipid hormones, juvenile hormone (JH), and 20-hydroxyecdysone (20E), recent data support the notion that this process must be adjusted in harmony with a nutritional input/reservoir and involvement of certain indoleamines and neuropeptides in regulation of such process. This study focuses on crosstalks among these axes, lipid hormones, monoamines, and neuropeptides in regulation of vitellogenesis in the American cockroach Periplaneta americana with novel aspects in the roles of arylalkylamine N-acetyltransferase (aaNAT), a key enzyme in indoleamine metabolism, and the enteroendocrine peptides; crustacean cardioactive peptide (CCAP) and short neuropeptide F (sNPF). Double-stranded RNA against aaNAT (dsRNAaaNAT) was injected into designated-aged females and the effects were monitored including the expressions of aaNAT itself, vitellogenin 1 and 2 (Vg1 and Vg2) and the vitellogenin receptor (VgR) mRNAs, oocyte maturation and changes in the hemolymph peptide concentrations. Effects of peptides application and 20E were also investigated. Injection of dsRNAaaNAT strongly suppressed oocyte maturation, transcription of Vg1, Vg2, VgR, and genes encoding JH acid- and farnesoate O-methyltransferases (JHAMT and FAMeT, respectively) acting in the JH biosynthetic pathway. However, it did not affect hemolymph concentrations of CCAP and sNPF. Injection of CCAP stimulated, while sNPF suppressed oocyte maturation and Vgs/VgR transcription, i.e., acting as allatomedins. Injection of CCAP promoted, while sNPF repressed ecdysteroid (20E) synthesis, particularly at the second step of Vg uptake. 20E also affected the JH biosynthetic pathway and Vg/VgR synthesis. The results revealed that on the course of vitellogenesis, JH- and 20E-mediated regulation occurs downstream to indoleamines- and peptides-mediated regulations. Intricate mutual interactions of these regulatory routes must orchestrate reproduction in this species at the highest potency.
RESUMO
Juvenile hormones (JH) regulate wide-ranging physiological and developmental processes in insects. However, molecular mechanisms underlying JH signaling remain to be determined. Vitellogenin (Vg) is primarily an egg-yolk protein, but recently proposed to serve many functions in insects. In the female American cockroach (Periplaneta americana), vitellogenin (Vg) genes are activated by JH III and suppressed by 20-hydroxyecdysone (20E) via cis-regulatory elements in a dose-dependent manner. In the present study, the upstream promoter region (935â¯bp) of Vg1 was cloned to elucidate the action of these hormones. A luciferase reporter assay identified an 81â¯bp region in the promoter region of Vg1 (-120 to -39â¯bp) that we found to be critical for JH III activation and 20E suppression. This 81â¯bp region contains a direct repeat separated by a 2-nucleotide spacer-designated Vg1HRE- that is similar to the Drosophila ecdysone response element direct repeat 4. Moreover, nuclear proteins isolated from nymphs, males, females, and Sf9 cells successfully bound to Vg1HRE, while binding was outcompeted by a 100-fold excess of cold probe or dephosphorylated nuclear protein extracts. In addition, binding was outcompeted by other ecdysone and JH response elements with similar half-site sequences (direct repeats) but to varying extents. Ultimately, we postulate that JH III indirectly activates Vg expression by interfering with or inhibiting the phosphorylation of nuclear proteins bound to Vg1HRE. Involvement of JH III in both induction of Vg1 and control of nuclear proteins binding to Vg1HRE suggest the latter to play an important role in JH signaling.
Assuntos
Regulação da Expressão Gênica , Proteínas de Insetos , Periplaneta , Sequências Repetitivas de Ácido Nucleico , Elementos de Resposta , Vitelogeninas , Animais , Feminino , Proteínas de Insetos/biossíntese , Proteínas de Insetos/genética , Hormônios Juvenis/genética , Hormônios Juvenis/metabolismo , Masculino , Ninfa , Periplaneta/genética , Periplaneta/metabolismo , Transdução de Sinais/genética , Vitelogeninas/biossíntese , Vitelogeninas/genéticaRESUMO
Ecdysteroid and sequiterpenoids juvenile hormones play a gonadotrophic role in the insect adult female vitellogenesis. The molecular basis of hormone action has been analyzed in great detail in flies and moths, but rarely in primitive insect orders. The primitive hemimetabolous insect Periplaneta americana was used, as a model, to isolate and characterize, for the first time, two cDNAs of RXR/USP, a component of the heterodimeric ecdysone receptor. These two cDNAs correspond to two isoforms, named PamRXR-S (short form) and PamRXR-L (long form). Both are identical except for 25 amino acids deletion/insertion located in the loop between helices H1 and H3 of the ligand-binding domain. The two isoforms are differentially expressed in different tissues as revealed by RT-PCR and northern blot analysis. In fat body, brain, ovary, and muscle tissues, the predominant form was PamRXR-S, whereas PamRXR-L was abundant in ovaries. The PamRXR transcript was detected during all stages of vitellogenesis in the fat body with different levels. It was little low during the early vitellogenic period (days 2, 3), then a peak of increase was detected during days 4-6 (day 5) which was followed by another peak of increase at the end of vitellogenesis, day 9. We assumed that PamRXR might play a dual role of induction of vitellogenin through JH at early vitellogenesis and suppression through 20E during late vitellogenesis. The present work will pave the way for several other investigations to understand both the ecdysteroid-dependent genetic hierarchy and JH mechanism controlling vitellogenesis in the American cockroach, P. americana.