Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 10: 847801, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356279

RESUMO

In multicellular organisms, epithelial cells are key elements of tissue organization. In developing tissues, cellular proliferation and differentiation are under the tight regulation of morphogenetic programs, that ensure the correct organ formation and functioning. In these processes, mitotic rates and division orientation are crucial in regulating the velocity and the timing of the forming tissue. Division orientation, specified by mitotic spindle placement with respect to epithelial apico-basal polarity, controls not only the partitioning of cellular components but also the positioning of the daughter cells within the tissue, and hence the contacts that daughter cells retain with the surrounding microenvironment. Daughter cells positioning is important to determine signal sensing and fate, and therefore the final function of the developing organ. In this review, we will discuss recent discoveries regarding the mechanistics of planar divisions in mammalian epithelial cells, summarizing technologies and model systems used to study oriented cell divisions in vitro such as three-dimensional cysts of immortalized cells and intestinal organoids. We also highlight how misorientation is corrected in vivo and in vitro, and how it might contribute to the onset of pathological conditions.

2.
Front Mol Biosci ; 9: 841777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35425809

RESUMO

Microtubules are key components of the eukaryotic cytoskeleton with essential roles in cell division, intercellular transport, cell morphology, motility, and signal transduction. They are composed of protofilaments of heterodimers of α-tubulin and ß-tubulin organized as rigid hollow cylinders that can assemble into large and dynamic intracellular structures. Consistent with their involvement in core cellular processes, affecting microtubule assembly results in cytotoxicity and cell death. For these reasons, microtubules are among the most important targets for the therapeutic treatment of several diseases, including cancer. The vast literature related to microtubule stabilizers and destabilizers has been reviewed extensively in recent years. Here we summarize recent experimental and computational approaches for the identification of novel tubulin modulators and delivery strategies. These include orphan small molecules, PROTACs as well as light-sensitive compounds that can be activated with high spatio-temporal accuracy and that represent promising tools for precision-targeted chemotherapy.

3.
Nat Med ; 26(10): 1593-1601, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32895569

RESUMO

Intestinal failure, following extensive anatomical or functional loss of small intestine, has debilitating long-term consequences for children1. The priority of patient care is to increase the length of functional intestine, particularly the jejunum, to promote nutritional independence2. Here we construct autologous jejunal mucosal grafts using biomaterials from pediatric patients and show that patient-derived organoids can be expanded efficiently in vitro. In parallel, we generate decellularized human intestinal matrix with intact nanotopography, which forms biological scaffolds. Proteomic and Raman spectroscopy analyses reveal highly analogous biochemical profiles of human small intestine and colon scaffolds, indicating that they can be used interchangeably as platforms for intestinal engineering. Indeed, seeding of jejunal organoids onto either type of scaffold reliably reconstructs grafts that exhibit several aspects of physiological jejunal function and that survive to form luminal structures after transplantation into the kidney capsule or subcutaneous pockets of mice for up to 2 weeks. Our findings provide proof-of-concept data for engineering patient-specific jejunal grafts for children with intestinal failure, ultimately aiding in the restoration of nutritional autonomy.


Assuntos
Enteropatias/patologia , Mucosa Intestinal/transplante , Jejuno/transplante , Organoides/patologia , Medicina de Precisão/métodos , Cultura Primária de Células/métodos , Engenharia Tecidual/métodos , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Criança , Enterócitos/patologia , Enterócitos/fisiologia , Enterócitos/transplante , Matriz Extracelular/patologia , Feminino , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Enteropatias/congênito , Enteropatias/terapia , Mucosa Intestinal/citologia , Mucosa Intestinal/patologia , Jejuno/citologia , Jejuno/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Estudo de Prova de Conceito , Suínos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa