Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Ecotoxicology ; 30(3): 411-420, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33675450

RESUMO

Calanoid copepods are integral to aquatic food webs and may drive the bioaccumulation of toxins and heavy metals, spread of infectious diseases, and occurrence of toxic cyanobacterial harmful algal blooms (HABs) in freshwater aquatic systems. However, interrelationships between copepod and cyanobacterial population dynamics and ecophysiology remain unclear. Insights into these relationships are important to aquatic resource management, as they may help guide mitigation efforts. We developed a calanoid copepod qPCR assay to investigate how copepod abundance and physiological status relate to the abundance of cyanobacteria and the concentration of total microcystin in a HAB-prone freshwater multi-use eutrophic lake. Through in silico and in vitro validation of primers and analyses of time series, we demonstrate that our assay can be used as a reliable tool for environmental monitoring. Importantly, copepod RNA:DNA ratios on and shortly after the day when microcystin concentration was at its highest within the lake were not significantly lower (or higher) than before or after this period, suggesting that copepods may have been tolerant of microcystin levels observed and capable of perpetuating bloom events by consuming competitors of toxic cyanobacteria.


Assuntos
Copépodes , Cianobactérias , Animais , Copépodes/genética , Cianobactérias/genética , DNA , Monitoramento Ambiental , Proliferação Nociva de Algas , Lagos , Microcistinas , RNA Ribossômico
2.
J Water Health ; 16(5): 711-723, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30285953

RESUMO

Intestinal enterococci indicate the fecal contamination of bathing waters. This study defines the performance characteristics of the reference method ISO 7899-2:2000 with water samples collected from inland and coastal bathing areas in Finland. From a total of 341 bacterial isolates grown on Slanetz and Bartley medium, 63.6% were confirmed as intestinal enterococci on bile aesculin agar. The partial 16S rRNA gene sequences showed that Enterococcus faecium and Enterococcus faecalis clades accounted for 93.1% of the confirmed isolates. The range of the false positive and false negative rate of the ISO 7899-2 was 0.0-18.5% and 5.6-57.1%, respectively, being affected by the presumptive colony count on the membrane. The analysis of multiple sample volumes is proposed to reach 10-100 colonies per membrane when 47 mm diameter membranes are used to prevent overestimation of low counts and underestimation of the high counts.


Assuntos
Enterococcus , Monitoramento Ambiental/métodos , Microbiologia da Água/normas , Enterococcus faecium , Finlândia , RNA Ribossômico 16S , Qualidade da Água/normas
3.
Appl Environ Microbiol ; 83(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28283527

RESUMO

To better understand the impacts of Corexit 9500 on the structure and activity levels of hydrocarbon-degrading microbial communities, we analyzed next-generation 16S rRNA gene sequencing libraries of hydrocarbon enrichments grown at 5 and 25°C using both DNA and RNA extracts as the sequencing templates. Oil biodegradation patterns in both 5 and 25°C enrichments were consistent with those reported in the literature (i.e., aliphatics were degraded faster than aromatics). Slight increases in biodegradation were observed in the presence of Corexit at both temperatures. Differences in community structure were observed between treatment conditions in the DNA-based libraries. The 25°C consortia were dominated by Vibrio, Idiomarina, Marinobacter, Alcanivorax, and Thalassospira species, while the 5°C consortia were dominated by several species of the genera Flavobacterium, Alcanivorax, and Oleispira Most of these genera have been linked to hydrocarbon degradation and have been observed after oil spills. Colwellia and Cycloclasticus, known aromatic degraders, were also found in these enrichments. The addition of Corexit did not have an effect on the active bacterial community structure of the 5°C consortia, while at 25°C, a decrease in the relative abundance of Marinobacter was observed. At 25°C, Thalassospira, Marinobacter, and Idiomarina were present at higher relative abundances in the RNA than DNA libraries, suggesting that they were active in degradation. Similarly, Oleispira was greatly stimulated by the addition of oil at 5°C.IMPORTANCE While dispersants such as Corexit 9500 can be used to treat oil spills, there is still debate on the effectiveness on enhancing oil biodegradation and its potential toxic effect on oil-degrading microbial communities. The results of this study provide some insights on the microbial dynamics of hydrocarbon-degrading bacterial populations in the presence of Corexit 9500. Operational taxonomic unit (OTU) analyses indicated that several OTUs were inhibited by the addition of Corexit. Conversely, a number of OTUs were stimulated by the addition of the dispersant, many of which were identified as known hydrocarbon-degrading bacteria. The results highlight the value of using RNA-based methods to further understand the impact of dispersant on the overall activity of different hydrocarbon-degrading bacterial groups.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Lipídeos/farmacologia , Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Poluição por Petróleo/análise , Filogenia
4.
Appl Environ Microbiol ; 82(9): 2872-2883, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26969701

RESUMO

Although the source of drinking water (DW) used in hospitals is commonly disinfected, biofilms forming on water pipelines are a refuge for bacteria, including possible pathogens that survive different disinfection strategies. These biofilm communities are only beginning to be explored by culture-independent techniques that circumvent the limitations of conventional monitoring efforts. Hence, theories regarding the frequency of opportunistic pathogens in DW biofilms and how biofilm members withstand high doses of disinfectants and/or chlorine residuals in the water supply remain speculative. The aim of this study was to characterize the composition of microbial communities growing on five hospital shower hoses using both 16S rRNA gene sequencing of bacterial isolates and whole-genome shotgun metagenome sequencing. The resulting data revealed a Mycobacterium-like population, closely related to Mycobacterium rhodesiae and Mycobacterium tusciae, to be the predominant taxon in all five samples, and its nearly complete draft genome sequence was recovered. In contrast, the fraction recovered by culture was mostly affiliated with Proteobacteria, including members of the genera Sphingomonas, Blastomonas, and Porphyrobacter.The biofilm community harbored genes related to disinfectant tolerance (2.34% of the total annotated proteins) and a lower abundance of virulence determinants related to colonization and evasion of the host immune system. Additionally, genes potentially conferring resistance to ß-lactam, aminoglycoside, amphenicol, and quinolone antibiotics were detected. Collectively, our results underscore the need to understand the microbiome of DW biofilms using metagenomic approaches. This information might lead to more robust management practices that minimize the risks associated with exposure to opportunistic pathogens in hospitals.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Infecção Hospitalar/genética , Infecção Hospitalar/microbiologia , Hospitais , Microbiologia da Água , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Cloro , Técnicas de Cultura , DNA Bacteriano/análise , Desinfetantes/farmacologia , Desinfecção , Farmacorresistência Bacteriana , Genoma Bacteriano , Metagenoma , Microbiota/genética , Mycobacterium/fisiologia , Ohio , Filogenia , Proteobactérias/fisiologia , RNA Ribossômico 16S/genética , Sphingomonadaceae/fisiologia , Abastecimento de Água
5.
Appl Environ Microbiol ; 81(1): 91-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25326295

RESUMO

The identification of fecal pollution sources is commonly carried out using DNA-based methods. However, there is evidence that DNA can be associated with dead cells or present as "naked DNA" in the environment. Furthermore, it has been shown that rRNA-targeted reverse transcription-quantitative PCR (RT-qPCR) assays can be more sensitive than rRNA gene-based qPCR assays since metabolically active cells usually contain higher numbers of ribosomes than quiescent cells. To this end, we compared the detection frequency of host-specific markers and fecal bacteria using RNA-based RT-qPCR and DNA-based qPCR methods for water samples collected in sites impacted by combined sewer overflows. As a group, fecal bacteria were more frequently detected in most sites using RNA-based methods. Specifically, 8, 87, and 85% of the samples positive for general enterococci, Enterococcus faecalis, and Enterococcus faecium markers, respectively, were detected using RT-qPCR, but not with the qPCR assay counterpart. On average, two human-specific Bacteroidales markers were not detected when using DNA in 12% of the samples, while they were positive for all samples when using RNA (cDNA) as the template. Moreover, signal intensity was up to three orders of magnitude higher in RT-qPCR assays than in qPCR assays. The human-specific Bacteroidales markers exhibited moderate correlation with conventional fecal indicators using RT-qPCR results, suggesting the persistence of nonhuman sources of fecal pollution or the presence of false-positive signals. In general, the results from this study suggest that RNA-based assays can increase the detection sensitivity of fecal bacteria in urban watersheds impacted with human fecal sources.


Assuntos
Bacteroidetes/isolamento & purificação , DNA Bacteriano/análise , Enterococcus/isolamento & purificação , RNA Bacteriano/análise , Reação em Cadeia da Polimerase em Tempo Real , Microbiologia da Água , Poluição da Água , Técnicas Bacteriológicas/métodos , Bacteroidetes/genética , Cidades , DNA Bacteriano/genética , Enterococcus/genética , Humanos , RNA Bacteriano/genética , Sensibilidade e Especificidade
6.
Environ Sci Technol ; 49(22): 13454-62, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26501957

RESUMO

Heavy metals can inhibit nitrification, a key process for nitrogen removal in wastewater treatment. The transcriptional responses of amoA, hao, nirK, and norB were measured in conjunction with specific oxygen uptake rate (sOUR) for nitrifying enrichment cultures exposed to different metals (Ni(II), Zn(II), Cd(II), and Pb(II)). There was significant decrease in sOUR with increasing concentrations for Ni(II) (0.03-3 mg/L), Zn(II) (0.1-10 mg/L), and Cd(II) (0.03-1 mg/L) (p < 0.05). However, no considerable changes in sOUR were observed with Pb(II) (1-100 mg/L), except at a dosage of 1000 mg/L causing 84% inhibition. Based on RT-qPCR data, the transcript levels of amoA and hao decreased when exposed to Ni(II) dosages. Slight up-regulation of amoA, hao, and nirK (0.5-1.5-fold) occurred after exposure to 0.3-3 mg/L Zn(II), although their expression decreased for 10 mg/L Zn(II). With the exception of 1000 mg/L Pb(II), stimulation of all genes occurred on Cd(II) and Pb(II) exposure. While overall the results show that RNA-based function-specific assays can be used as potential surrogates for measuring nitrification activity, the degree of inhibition inferred from sOUR and gene transcription is different. We suggest that variations in transcription of functional genes may supplement sOUR based assays as early warning indicators of upsets in nitrification.


Assuntos
Bactérias/efeitos dos fármacos , Reatores Biológicos/microbiologia , Metais Pesados/toxicidade , Amônia/metabolismo , Bactérias/genética , Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Nitrificação , Nitrogênio/metabolismo , Regulação para Cima , Águas Residuárias/química , Águas Residuárias/microbiologia
7.
Appl Environ Microbiol ; 80(6): 1838-47, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24413599

RESUMO

Using 16S rRNA gene sequencing analysis, we examined the bacterial diversity and the presence of opportunistic bacterial pathogens (i.e., Campylobacter and Helicobacter) in red knot (Calidris canutus; n = 40), ruddy turnstone (Arenaria interpres; n = 35), and semipalmated sandpiper (Calidris pusilla; n = 22) fecal samples collected during a migratory stopover in Delaware Bay. Additionally, we studied the occurrence of Campylobacter spp., enterococci, and waterfowl fecal source markers using quantitative PCR (qPCR) assays. Of 3,889 16S rRNA clone sequences analyzed, the bacterial community was mostly composed of Bacilli (63.5%), Fusobacteria (12.7%), Epsilonproteobacteria (6.5%), and Clostridia (5.8%). When epsilonproteobacterium-specific 23S rRNA gene clone libraries (i.e., 1,414 sequences) were analyzed, the sequences were identified as Campylobacter (82.3%) or Helicobacter (17.7%) spp. Specifically, 38.4%, 10.1%, and 26.0% of clone sequences were identified as C. lari (>99% sequence identity) in ruddy turnstone, red knot, and semipalmated sandpiper clone libraries, respectively. Other pathogenic species of Campylobacter, such as C. jejuni and C. coli, were not detected in excreta of any of the three bird species. Most Helicobacter-like sequences identified were closely related to H. pametensis (>99% sequence identity) and H. anseris (92% sequence identity). qPCR results showed that the occurrence and abundance of Campylobacter spp. was relatively high compared to those of fecal indicator bacteria, such as Enterococcus spp., E. faecalis, and Catellicoccus marimammalium. Overall, the results provide insights into the complexity of the shorebird gut microbial community and suggest that these migratory birds are important reservoirs of pathogenic Campylobacter species.


Assuntos
Biota , Campylobacter/isolamento & purificação , Charadriiformes/microbiologia , Trato Gastrointestinal/microbiologia , Helicobacter/isolamento & purificação , Animais , Campylobacter/classificação , Campylobacter/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Delaware , Fezes/microbiologia , Helicobacter/classificação , Helicobacter/genética , Dados de Sequência Molecular , Filogenia , Prevalência , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
8.
Appl Environ Microbiol ; 79(1): 196-204, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23087032

RESUMO

The detection of environmental enterococci has been determined primarily by using culture-based techniques that might exclude some enterococcal species as well as those that are nonculturable. To address this, the relative abundances of enterococci were examined by challenging fecal and water samples against a currently available genus-specific assay (Entero1). To determine the diversity of enterococcal species, 16S rRNA gene-based group-specific quantitative PCR (qPCR) assays were developed and evaluated against eight of the most common environmental enterococcal species. Partial 16S rRNA gene sequences of 439 presumptive environmental enterococcal strains were analyzed to study further the diversity of enterococci and to confirm the specificities of group-specific assays. The group-specific qPCR assays showed relatively high amplification rates with targeted species (>98%), although some assays cross-amplified with nontargeted species (1.3 to 6.5%). The results with the group-specific assays also showed that different enterococcal species co-occurred in most fecal samples. The most abundant enterococci in water and fecal samples were Enterococcus faecalis and Enterococcus faecium, although we identified more water isolates as Enterococcus casseliflavus than as any of the other species. The prevalence of the Entero1 marker was in agreement with the combined number of positive signals determined by the group-specific assays in most fecal samples, except in gull feces. On the other hand, the number of group-specific assay signals was lower in all water samples tested, suggesting that other enterococcal species are present in these samples. While the results highlight the value of genus- and group-specific assays for detecting the major enterococcal groups in environmental water samples, additional studies are needed to determine further the diversity, distributions, and relative abundances of all enterococcal species found in water.


Assuntos
Técnicas Bacteriológicas/métodos , Enterococcus/classificação , Enterococcus/isolamento & purificação , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Primers do DNA/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Enterococcus/genética , Microbiologia Ambiental , Variação Genética , Dados de Sequência Molecular , RNA Bacteriano/genética , Análise de Sequência de DNA
9.
Environ Sci Technol ; 47(23): 13611-20, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24187936

RESUMO

In this study, we evaluated the use of RT-qPCR assays targeting rRNA gene sequences for the detection of fecal bacteria in water samples. We challenged the RT-qPCR assays against RNA extracted from sewage effluent (n = 14), surface water (n = 30), and treated source water (n = 15) samples. Additionally, we applied the same assays using DNA as the qPCR template. The targeted fecal bacteria were present in most of the samples tested, although in several cases, the detection frequency increased when RNA was used as the template. For example, the majority of samples that tested positive for E. coli and Campylobacter spp. in surface waters, and for human-specific Bacteroidales, E. coli, and Enterococcus spp. in treated source waters were only detected when rRNA was used as the original template. The difference in detection frequency using rRNA or rDNA (rRNA gene) was sample- and assay-dependent, suggesting that the abundance of active and nonactive populations differed between samples. Statistical analyses for each population exhibiting multiple quantifiable results showed that the rRNA copy numbers were significantly higher than the rDNA counterparts (p < 0.05). Moreover, the detection frequency of rRNA-based assays were in better agreement with the culture-based results of E. coli, intestinal enterococci, and thermotolerant Campylobacter spp. in surface waters than that of rDNA-based assays, suggesting that rRNA signals were associated to active bacterial populations. Our data show that using rRNA-based approaches significantly increases detection sensitivity for common fecal bacteria in environmental waters. These findings have important implications for microbial water quality monitoring and public health risk assessments.


Assuntos
Bactérias/isolamento & purificação , DNA Ribossômico/genética , Monitoramento Ambiental/métodos , Fezes/microbiologia , Genes de RNAr/genética , Esgotos/microbiologia , Microbiologia da Água , Bactérias/genética , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Sequência de Bases , Campylobacter/genética , Campylobacter/isolamento & purificação , Primers do DNA/genética , Enterococcus/genética , Enterococcus/isolamento & purificação , Monitoramento Ambiental/estatística & dados numéricos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Humanos , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real
10.
Environ Sci Technol ; 47(24): 14385-93, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24143996

RESUMO

The study evaluates the impact of polyvinylpyrrolidone (PVP) coated silver nanoparticles (PVP-AgNPs) on the composting of municipal solid waste. The results suggest that there was no statistically significant difference in the leachate, gas, and solid quality parameters and overall composting performance between the treatments containing the AgNPs, Ag(+), and negative control. Nonetheless, taxonomical analyses of 25 Illumina 16S rDNA barcoded libraries containing 2 393 504 sequences indicated that the bacterial communities in composted samples were highly diverse and primarily dominated by Clostridia (48.5%), Bacilli (27.9%), and beta-Proteobacteria (13.4%). Bacterial diversity studies showed that the overall bacterial community structure in the composters changed in response to the Ag-based treatments. However, the data suggest that functional performance was not significantly affected due to potential bacterial functional redundancy within the compost samples. The data also indicate that while the surface transformation of AgNPs to AgCl and Ag2S can reduce the toxicity, complexation with organic matter may also play a major role. The results of this study further suggest that at relatively low concentrations, the organically rich waste management systems' functionality may not be influenced by the presence of AgNPs.


Assuntos
Cidades , Nanopartículas Metálicas/química , Prata/química , Solo , Resíduos Sólidos/análise , Bactérias/classificação , Biodiversidade , Gases/análise , Nanopartículas Metálicas/ultraestrutura , Espectroscopia Fotoeletrônica
11.
Appl Environ Microbiol ; 78(12): 4338-45, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22492437

RESUMO

While the microbial water quality in the Platte River is seasonally impacted by excreta from migrating cranes, there are no methods available to study crane fecal contamination. Here we characterized microbial populations in crane feces using phylogenetic analysis of 16S rRNA gene fecal clone libraries. Using these sequences, a novel crane quantitative PCR (Crane1) assay was developed, and its applicability as a microbial source tracking (MST) assay was evaluated by determining its host specificity and detection ability in environmental waters. Bacteria from crane excreta were dominated by bacilli and proteobacteria, with a notable paucity of sequences homologous to Bacteroidetes and Clostridia. The Crane1 marker targeted a dominant clade of unclassified Lactobacillales sequences closely related to Catellicoccus marimammalium. The host distribution of the Crane1 marker was relatively high, being positive for 69% (66/96) of the crane excreta samples tested. The assay also showed high host specificity, with 95% of the nontarget fecal samples (i.e., n = 553; 20 different free-range hosts) being negative. Of the presumed crane-impacted water samples (n = 16), 88% were positive for the Crane1 assay, whereas none of the water samples not impacted by cranes were positive (n = 165). Bayesian statistical models of the Crane1 MST marker demonstrated high confidence in detecting true-positive signals and a low probability of false-negative signals from environmental water samples. Altogether, these data suggest that the newly developed marker could be used in environmental monitoring studies to study crane fecal pollution dynamics.


Assuntos
Técnicas Bacteriológicas/métodos , Biota , Fezes/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Microbiologia da Água , Poluição da Água , Animais , Aves , Primers do DNA/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Dados de Sequência Molecular , Análise de Sequência de DNA
12.
Environ Microbiome ; 16(1): 11, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022963

RESUMO

BACKGROUND: Rivers and lakes are used for multiple purposes such as for drinking water (DW) production, recreation, and as recipients of wastewater from various sources. The deterioration of surface water quality with wastewater is well-known, but less is known about the bacterial community dynamics in the affected surface waters. Understanding the bacterial community characteristics -from the source of contamination, through the watershed to the DW production process-may help safeguard human health and the environment. RESULTS: The spatial and seasonal dynamics of bacterial communities, their predicted functions, and potential health-related bacterial (PHRB) reads within the Kokemäenjoki River watershed in southwest Finland were analyzed with the 16S rRNA-gene amplicon sequencing method. Water samples were collected from various sampling points of the watershed, from its major pollution sources (sewage influent and effluent, industrial effluent, mine runoff) and different stages of the DW treatment process (pre-treatment, groundwater observation well, DW production well) by using the river water as raw water with an artificial groundwater recharge (AGR). The beta-diversity analysis revealed that bacterial communities were highly varied among sample groups (R = 0.92, p <  0.001, ANOSIM). The species richness and evenness indices were highest in surface water (Chao1; 920 ± 10) among sample groups and gradually decreased during the DW treatment process (DW production well; Chao1: 320 ± 20). Although the phylum Proteobacteria was omnipresent, its relative abundance was higher in sewage and industrial effluents (66-80%) than in surface water (55%). Phyla Firmicutes and Fusobacteria were only detected in sewage samples. Actinobacteria was more abundant in the surface water (≥13%) than in other groups (≤3%). Acidobacteria was more abundant in the DW treatment process (≥13%) than in others (≤2%). In total, the share of PHRB reads was higher in sewage and surface water than in the DW treatment samples. The seasonal effect in bacterial communities was observed only on surface water samples, with the lowest diversity during summer. CONCLUSIONS: The low bacterial diversity and absence of PHRB read in the DW samples indicate AGR can produce biologically stable and microbiologically safe drinking water. Furthermore, the significantly different bacterial communities at the pollution sources compared to surface water and DW samples highlight the importance of effective wastewater treatment for protecting the environment and human health.

13.
AIMS Environ Sci ; 4(3): 443-455, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32802939

RESUMO

Mitochondrial signature sequences have frequently been used to study human population diversity around the world. Traditionally, this requires obtaining samples directly from individuals which is cumbersome, time consuming and limited to the number of individuals that participated in these types of surveys. Here, we used environmental DNA extracts to determine the presence and sequence variability of human mitochondrial sequences as a means to study the diversity of populations inhabiting in areas nearby a tropical watershed impacted with human fecal pollution. We used high-throughput sequencing (Illumina) and barcoding to obtain thousands of sequences from the mitochondrial hypervariable region 2 (HVR2) and determined the different haplotypes present in 10 different water samples. Sequence analyses indicated a total of 19 distinct variants with frequency greater than 5%. The HVR2 sequences were associated with haplogroups of West Eurasian (57.6%), Sub-Saharan African (23.9%), and American Indian (11%) ancestry. This was in relative accordance with population census data from the watershed sites. The results from this study demonstrates the potential value of mitochondrial sequence data retrieved from fecally impacted environmental waters to study the population diversity of local municipalities. This environmental DNA approach may also have other public health implications such as tracking background levels of human mitochondrial genes associated with diseases. It may be possible to expand this approach to other animal species inhabiting or using natural water systems.

14.
Chemosphere ; 147: 361-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26774300

RESUMO

The effect of Cr(III) and Cr(VI) on nitrification was examined with samples from nitrifying enrichment cultures using three different approaches: by measuring substrate (ammonia) specific oxygen uptake rates (SOUR), by using RT-qPCR to quantify the transcripts of functional genes involved in nitrification, and by analysis of 16S rRNA sequences to determine changes in structure and activity of the microbial communities. The nitrifying bioreactor was operated as a continuous reactor with a 24 h hydraulic retention time. The samples were exposed in batch vessels to Cr(III) (10-300 mg/L) and Cr(VI) (1-30 mg/L) for a period of 12 h. There was considerable decrease in SOUR with increasing dosages for both Cr(III) and Cr(VI), however Cr(VI) was more inhibitory than Cr(III). Based on the RT-qPCR data, there was reduction in the transcript levels of amoA and hao for increasing Cr(III) dosage, which corresponded well with the ammonia oxidation activity measured via SOUR. For Cr(VI) exposure, there was comparatively little reduction in amoA expression while hao expression decreased for 1-3 mg/L Cr(VI) and increased at 30 mg/L Cr(VI). While Nitrosomonas spp. were the dominant bacteria in the bioreactor, based on 16S rRNA sequencing, there was a considerable reduction in Nitrosomonas activity upon exposure to 300 mg/L Cr(III). In contrast, a relatively small reduction in activity was observed at 30 mg/L Cr(VI) loading. Our data that suggest that both Cr(III) and Cr(VI) were inhibitory to nitrification at concentrations near the high end of industrial effluent concentrations.


Assuntos
Bactérias/metabolismo , Cromo/metabolismo , Nitrificação/efeitos dos fármacos , Poluentes Químicos da Água/metabolismo , Amônia/metabolismo , Reatores Biológicos/microbiologia , DNA Bacteriano/metabolismo , Expressão Gênica , Oxirredução , Oxigênio/metabolismo , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Águas Residuárias
15.
Water Res ; 48: 613-21, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24169514

RESUMO

Chicken feces commonly contain human pathogens and are also important sources of fecal pollution in environmental waters. Consequently, methods that can detect chicken fecal pollution are needed in public health and environmental monitoring studies. In this study, we compared a previously developed SYBR green qPCR assay (LA35) to a novel TaqMan qPCR assay (CL) for the environmental detection of poultry-associated fecal pollution. We tested both assays against chicken litter (n = 40), chicken fecal samples (n = 186), non-chicken fecal sources (n = 484), and environmental water samples (n = 323). Most chicken litter samples (i.e., ≥ 98%) were positive for both assays with relatively high signal intensities, whereas only 23% and 12% of poultry fecal samples (n = 186) were positive with the LA35 and the CL assays, respectively. Data using fecal samples from non-target animal species showed that the assays are highly host-associated (≥ 95%). Bayesian statistical models showed that the two assays are associated with relatively low probability of false-positive and false-negative signals in water samples. The CL marker had a lower prevalence than the LA35 assay when tested against environmental water samples (i.e., 21% vs. 31% positive signals). However, by combining the results from the two assays the detection levels increased to 41%, suggesting that using multiple assays can improve the detection of chicken-fecal pollution in environmental waters.


Assuntos
Brevibacterium/genética , Genes Bacterianos , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Animais , Sequência de Bases , Teorema de Bayes , Primers do DNA , Esterco , Aves Domésticas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa