Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Cancer Immunol Immunother ; 72(6): 1933-1939, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36436018

RESUMO

A variety of variables, such as microsatellite instability or inflammatory mediators, are critical players in the development and progression of colorectal cancer (CRC). Natural killer (NK) and natural killer T (NKT) cells are involved in the prognoses of CRC. Immunological components of the tumor microenvironment (TME) impact cancer progression and therapeutic responses. We report that CRC patients with higher frequencies of tumor-infiltrating PD-1+ NK and NKT cells had significantly longer disease-free survival (DFS) than patients with lower frequencies. In agreement with that, patients with higher frequencies of tumor-infiltrating PD-1- NK and NKT cells showed shorter DFS. There were no significant associations between tumor-infiltrating PD-1+TIM-3+, PD-1+TIGIT+, PD-1+ICOS+, PD-1+LAG-3+ NK cells, and PD-1+TIM-3+, PD-1+TIGIT+, and PD-1+LAG-3+ NKT cells with DFS. This study highlights the significance of PD-1 expression on tumor-infiltrating NK and NKT cells and its association with disease prognoses in CRC patients.


Assuntos
Células T Matadoras Naturais , Neoplasias , Humanos , Receptor de Morte Celular Programada 1/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Células T Matadoras Naturais/metabolismo , Intervalo Livre de Doença , Receptores Imunológicos , Microambiente Tumoral
2.
Clin Immunol ; 245: 109177, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36356848

RESUMO

Exhaustion of immune cells in COVID-19 remains a serious concern for infection management and therapeutic interventions. As reported, immune cells such as T effector cells (Teff), T regulatory cells (Tregs), natural killer cells (NKs), and antigen-presenting cells (APCs) exhibit uncontrolled functions in COVID-19. Unfortunately, the mechanisms that orchestrate immune cell functionality and virus interaction are still unknown. Recent studies linked adaptive immune cell exhaustion to underlying epigenetic mechanisms that regulate the epigenetic transcription of inhibitory immune checkpoint receptors (ICs). Further to that, the over-activation of T cells accompanied by the dysfunctionality of DCs and Tregs may enhance uncontrollable alveoli inflammation and cytokine storm in COVID-19. This might explain the reasons behind the failure of DC-based vaccines in inducing sufficient anti-viral responses. This review explains the processes behind the over-activation and exhaustion of innate and adaptive immune cells in COVID-19, which may contribute to developing novel immune intervention strategies.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Inflamação , Células Matadoras Naturais
3.
BMC Cancer ; 22(1): 601, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655158

RESUMO

There are different subsets of T regulatory cells (Tregs), orchestrating critical roles in the regulation of anti-tumor immunity in colorectal cancer (CRC). In this study, we report that a high frequency of circulating CD4+FoxP3+ Tregs was associated with poorer disease-free survival (DFS), while their higher frequencies in tumor-infiltrating CD4+ Tregs was associated with better DFS. We further investigated such associations with four Tregs/T cells expressing or lacking FoxP3 and Helios (FoxP3±Helios±). For the first time, we report that a high frequency of circulating CD4+FoxP3+Helios+ Tregs was associated with poorer DFS, while a high frequency of tumor-infiltrating CD4+FoxP3-Helios- T cells was associated with poorer DFS. In the four FoxP3±Helios± T cell subsets expressing any of the immune checkpoints (ICs) investigated, we found that a high frequency of CD4+FoxP3+Helios-PD-1+ Tregs in circulation was associated with worse DFS. We also found that high frequencies of FoxP3+Helios+CTLA-4+ Tregs, FoxP3+Helios-CTLA-4+ Tregs, and FoxP3-Helios+CTLA-4+ CD4+ T cells in circulation were associated with worse DFS. In contrast, high frequencies of CD4+TIM-3+ T cells, FoxP3+Helios+TIM-3+ Tregs, and FoxP3-Helios+TIM-3+ CD4+ T cells in circulation were associated with longer DFS. Our data show that certain CD4+ Treg/T cell subsets could serve as independent predictive biomarkers in CRC patients. Identification of the exact subpopulations contributing to clinical outcomes is critical for prognoses and therapeutic targeting.


Assuntos
Neoplasias Colorretais , Linfócitos T Reguladores , Antígeno CTLA-4 , Neoplasias Colorretais/patologia , Intervalo Livre de Doença , Fatores de Transcrição Forkhead , Receptor Celular 2 do Vírus da Hepatite A , Humanos , Fator de Transcrição Ikaros , Subpopulações de Linfócitos T/patologia
4.
J Immunol ; 204(1): 199-211, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31801817

RESUMO

Programmed cell death 1 (PD-1) is critical for T regulatory cells (Tregs) to maintain peripheral tolerance to self-antigens. In the tumor microenvironment, interaction between PD-1 and its ligands supports tumor immune evasion. Pembrolizumab blocks interactions of PD-1 with its ligands, enhancing antitumor and clinical responses. We and others have reported that pembrolizumab does not affect function or phenotype of thymic-derived Tregs; however, little is known about its effect on extrathymic differentiation of peripheral Tregs. In this study, we investigated the effect of pembrolizumab on in vitro-induced Tregs (iTregs). Our work showed that PD-1 blockade interferes with iTreg differentiation and has no potential effect on the stability of FOXP3 after differentiation. Additionally, we found that both nontreated and pembrolizumab-treated iTregs were suppressive. However, pembrolizumab-treated iTregs were relatively less suppressive in higher Treg ratios and failed to produce IL-10 compared with their nontreated counterparts. Different methods including transcriptomic analyses confirmed that the downregulation of FOXP3 was mediated by activating mTOR and STAT1 and inhibiting MAPK pathways, shifting the iTreg polarization in favor of Th1 and Th17 subsets. To confirm the role of mTOR activation, we found that rapamycin diminished the effect of pembrolizumab-mediated downregulation of FOXP3. Ingenuity pathway analysis revealed that pembrolizumab-treated iTregs showed upregulation of genes promoting DNA repair and immune cell trafficking, in addition to downregulation of genes supporting cellular assembly and organization. To our knowledge, this is the first study to show that pembrolizumab interferes with differentiation of human FOXP3+ iTregs and to disclose some of the molecular pathways involved.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos Imunológicos/farmacologia , Fatores de Transcrição Forkhead/antagonistas & inibidores , Linfócitos T Reguladores/efeitos dos fármacos , Serina-Treonina Quinases TOR/imunologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Desmetilação/efeitos dos fármacos , Fatores de Transcrição Forkhead/imunologia , Voluntários Saudáveis , Humanos , Estabilidade Proteica/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Regulação para Cima/efeitos dos fármacos
5.
Semin Cancer Biol ; 65: 13-27, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31362073

RESUMO

In the tumor microenvironment (TME), tumor cells are constantly evolving to reduce neoantigen generation and the mutational burden to escape the anti-tumor response. This will lower tumor reactivity to the adaptive immune response and give rise to tumor intrinsic factors, such as altered expression of immune regulatory molecules on tumor cells. Tumor-extrinsic factors, such as immunosuppressive cells, soluble suppressive molecules or inhibitory receptors expressed by immune cells will alter the composition and activity of tumor-infiltrating lymphocytes (TILs) (by increasing T regulatory cells:T effector cells ratio and inhibiting T effector cell function) and promote tumor growth and metastasis. Together, these factors limit the response rates and clinical outcomes to a particular cancer therapy. Within the TME, the cross-talks between immune and non-immune cells result in the generation of positive feedback loops, which augment immunosuppression and support tumor growth and survival (termed as tumor-mediated immunosuppression). Cancer immunotherapies, such as immune checkpoint inhibitors (ICIs) and adoptive cell transfer (ACT), have shown therapeutic efficacy in hematologic cancers and different types of solid tumors. However, achieving durable response rates in some cancer patients remains a challenge as a result of acquired resistance and tumor immune evasion. This could be driven by the cellular and molecular suppressive network within the TME or due to the loss of tumor antigens. In this review, we describe the contribution of the immunosuppressive cellular and molecular tumor network to the development of acquired resistance against cancer immunotherapies. We also discuss potential combined therapeutic strategies which could help to overcome such resistance against cancer immunotherapies, and to enhance anti-tumor immune responses and improve clinical outcomes in patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos/imunologia , Imunoterapia/efeitos adversos , Neoplasias/tratamento farmacológico , Microambiente Tumoral/imunologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Tolerância Imunológica/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/efeitos dos fármacos
6.
Semin Cancer Biol ; 65: 1-12, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31265893

RESUMO

Interactions between immune checkpoints (ICs) and their ligands negatively regulate T cell activation pathways involved in physiological immune responses against specific antigens. ICs and their ligands are frequently upregulated in the tumor microenvironment (TME) of various malignancies, and they represent significant barriers for induction of effective anti-tumor immune responses. Several IC inhibitors (ICIs) have been developed, with some currently in clinical trials and others have been approved for the treatment of different cancers. However, tumor cells are able to counteract the activity of ICIs and can commission additional inhibitory pathways via expression of other ICs/ligands within the TME. This review discusses the expression of various ICs/ligands in the TME and their impact on tumor immune evasion. Additionally, we discuss various regulatory mechanisms, including genetic and epigenetic, and other modulatory factors including hypoxia and the presence of immunosuppressive populations in the TME, which result in upregulation of ICs in various cancers. Moreover, we discuss the prognostic significance of ICs and their ligands, and the potential strategies to enhance treatment responses to ICIs. This review aims to advance our current knowledge on the role of ICs in the TME and the clinical benefits of targeting them.


Assuntos
Antígeno B7-H1/imunologia , Antígeno CTLA-4/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Antígeno B7-H1/antagonistas & inibidores , Antígeno CTLA-4/antagonistas & inibidores , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/patologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Microambiente Tumoral/imunologia
7.
Immunology ; 162(1): 30-43, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32935333

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2, a novel coronavirus strain. Some studies suggest that COVID-19 could be an immune-related disease, and failure of effective immune responses in initial stages of viral infection could contribute to systemic inflammation and tissue damage, leading to worse disease outcomes. T cells can act as a double-edge sword with both pro- and anti-roles in the progression of COVID-19. Thus, better understanding of their roles in immune responses to SARS-CoV-2 infection is crucial. T cells primarily react to the spike protein on the coronavirus to initiate antiviral immunity; however, T-cell responses can be suboptimal, impaired or excessive in severe COVID-19 patients. This review focuses on the multifaceted roles of T cells in COVID-19 pathogenesis and rationalizes their significance in eliciting appropriate antiviral immune responses in COVID-19 patients and unexposed individuals. In addition, we summarize the potential therapeutic approaches related to T cells to treat COVID-19 patients. These include adoptive T-cell therapies, vaccines activating T-cell responses, recombinant cytokines, Th1 activators and Th17 blockers, and potential utilization of immune checkpoint inhibitors alone or in combination with anti-inflammatory drugs to improve antiviral T-cell responses against SARS-CoV-2.


Assuntos
COVID-19/imunologia , COVID-19/terapia , Imunidade Celular , Imunoterapia , Pulmão/imunologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Transferência Adotiva , Animais , Antivirais/uso terapêutico , COVID-19/virologia , Vacinas contra COVID-19/uso terapêutico , Interações Hospedeiro-Patógeno , Humanos , Imunidade Celular/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Linfócitos T/efeitos dos fármacos , Linfócitos T/transplante , Linfócitos T/virologia , Tratamento Farmacológico da COVID-19
8.
Cancer Immunol Immunother ; 70(8): 2103-2121, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33532902

RESUMO

Metabolic dysregulation in the hypoxic tumor microenvironment (TME) is considered as a hallmark of solid tumors, leading to changes in biosynthetic pathways favoring onset, survival and proliferation of malignant cells. Within the TME, hypoxic milieu favors metabolic reprogramming of tumor cells, which subsequently affects biological properties of tumor-infiltrating immune cells. T regulatory cells (Tregs), including both circulating and tissue-resident cells, are particularly susceptible to hypoxic metabolic signaling that can reprogram their biological and physicochemical properties. Furthermore, metabolic reprogramming modifies Tregs to utilize alternative substrates and undergo a plethora of metabolic events to meet their energy demands. Major impact of this metabolic reprogramming can result in differentiation, survival, excessive secretion of immunosuppressive cytokines and proliferation of Tregs within the TME, which in turn dampen anti-tumor immune responses. Studies on fine-tuning of Treg metabolism are challenging due to heterogenicity of tissue-resident Tregs and their dynamic functions. In this review, we highlight tumor intrinsic and extrinsic factors, which can influence Treg metabolism in the hypoxic TME. Moreover, we focus on metabolic reprogramming of Tregs that could unveil potential regulatory networks favoring tumorigenesis/progression, and provide novel insights, including inhibitors against acetyl-coA carboxylase 1 and transforming growth factor beta into targeting Treg metabolism for therapeutic benefits.


Assuntos
Reprogramação Celular/imunologia , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/imunologia , Animais , Carcinogênese/imunologia , Diferenciação Celular/imunologia , Humanos
9.
Cancer Immunol Immunother ; 70(9): 2625-2638, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33582867

RESUMO

There is an increased risk of colorectal cancer (CRC) development in patients with non-insulin-dependent type 2 diabetes. CD8+ T cells have been implicated in diabetes and are crucial for anti-tumor immunity. However, transcriptomic profiling for CD8+ T cells from CRC diabetic patients has not been explored. We performed RNA sequencing and compared transcriptomic profiles of CD8+ tumor-infiltrating T lymphocytes (CD8+ TILs) in CRC diabetic patients with CRC nondiabetic patients. We found that genes associated with ribogenesis, epigenetic regulations, oxidative phosphorylation and cell cycle arrest were upregulated in CD8+ TILs from diabetic patients, while genes associated with PI3K signaling pathway, cytokine response and response to lipids were downregulated. Among the significantly deregulated 1009 genes, 342 (186 upregulated and 156 downregulated) genes were selected based on their link to diabetes, and their associations with the presence of specific CRC pathological parameters were assessed using GDC TCGA colon database. The 186 upregulated genes were associated with the presence of colon polyps history (P = 0.0007) and lymphatic invasion (P = 0.0025). Moreover, CRC patients with high expression of the 186 genes were more likely to have poorer disease-specific survival (DSS) (Mantel-Cox log-rank P = 0.024) than those with low score. Our data provide novel insights into molecular pathways and biological functions, which could be altered in CD8+ TILs from CRC diabetic versus nondiabetic patients, and reveal candidate genes linked to diabetes, which could predict DSS and pathological parameters associated with CRC progression. However, further investigations using larger patient cohorts and functional studies are required to validate these findings.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Colorretais/etiologia , Diabetes Mellitus Tipo 2/complicações , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Transcriptoma , Biomarcadores , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Biologia Computacional , Diabetes Mellitus Tipo 2/diagnóstico , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunofenotipagem , Prognóstico , Mapeamento de Interação de Proteínas
10.
Cancer Immunol Immunother ; 70(3): 803-815, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33000418

RESUMO

Colorectal cancer (CRC) has high mortality rates, especially in patients with advanced disease stages, who often do not respond to therapy. The cellular components of the tumor microenvironment are essentially responsible for dictating disease progression and response to therapy. Expansion of different myeloid cell subsets in CRC tumors has been reported previously. However, tumor-infiltrating myeloid cells have both pro- and anti-tumor roles in disease progression. In this study, we performed transcriptomic profiling of cells of myeloid lineage (CD33+) from bulk CRC tumors at varying disease stages. We identified differentially expressed genes and pathways between CRC patients with advanced stage and early stages. We found that pro-angiogenic and hypoxia-related genes were upregulated, while genes related to immune and inflammatory responses were downregulated in CD33+ myeloid cells from patients with advanced stages, implying that immune cell recruitment and activation could be compromised in advanced disease stages. Moreover, we identified a unique "poor prognosis CD33+ gene signature" by aligning top upregulated and downregulated genes in tumor-infiltrating myeloid cells from our analyses with data from The Cancer Genome Atlas. Our results showed that this gene signature is an independent prognostic indicator for disease-specific survival in CRC patients, potentially reflecting its clinical importance.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Células Mieloides/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Biomarcadores , Neoplasias Colorretais/patologia , Feminino , Perfilação da Expressão Gênica , Genômica/métodos , Humanos , Masculino , Células Mieloides/patologia , Gradação de Tumores , Estadiamento de Neoplasias , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética
11.
Immunol Invest ; 50(8): 952-963, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32727251

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells with potent immunosuppressive functions, which can inhibit the activation of immune responses under a steady-state condition and pathological conditions. We performed transcriptomic profiling of circulating CD33+HLA-DR+ myeloid antigen-presenting cells (APCs) and CD33+HLA-DR- myeloid cells (potentially MDSCs) in healthy individuals. We sorted both subpopulations from peripheral blood mononuclear cells (PBMCs) of 10 healthy donors and performed RNA sequencing (RNA-Seq). We found that several signaling pathways associated with the positive regulation of immune responses, such as antigen presentation/processing, FcγR-mediated phagocytosis and immune cell trafficking, phosphoinositide 3-kinase (PI3K)/Akt signaling, DC maturation, triggering receptor expressed on myeloid cells 1 (TREM1) signaling, nuclear factor of activated T cells (NFAT) and IL-8 signaling were downregulated in CD33+HLA-DR- myeloid cells. In contrast, pathways implicated in tumor suppression and anti-inflammation, including peroxisome proliferator-activated receptor (PPAR) and phosphatase and tensin homolog (PTEN), were upregulated in CD33+HLA-DR- myeloid cells. These data indicate that PPAR/PTEN axis could be upregulated in myeloid cells to keep the immune system in check in normal physiological conditions. Our data reveal some of the molecular and functional differences between CD33+HLA-DR+ APCs and CD33+HLA-DR- myeloid cells in a steady-state condition, reflecting the potential suppressive function of CD33+HLA-DR- myeloid cells to maintain immune tolerance. For future studies, the same methodological approach could be applied to perform transcriptomic profiling of myeloid subsets in pathological conditions.


Assuntos
Leucócitos Mononucleares , Fosfatidilinositol 3-Quinases , Células Apresentadoras de Antígenos , Antígenos HLA-DR/genética , Humanos , Células Mieloides , Transcriptoma
12.
Clin Immunol ; 215: 108429, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32320745

RESUMO

T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) is an inhibitory immune checkpoint, which suppresses anti-tumor immune responses. TIM-3 expression on different immune cells in periphery and tumor microenvironment (TME) of colorectal cancer (CRC) patients has not been fully investigated. We found that TIM-3 was mainly expressed on monocytic myeloid cells (MMCs) and antigen-presenting cells (APCs) in circulation but was mainly expressed on T cells and APCs in the TME. Additionally, TIM-3- T cells co-expressed higher levels of PD-1 than TIM-3+ T cells in normal tissue. In contrast, TIM-3+ T cells in the TME showed significantly higher PD-1 expression. Interestingly, there was a trend towards increased levels of TIM-3+ APCs with disease stages; however, levels of TIM-3+ T cells were decreased with disease stages in the TME. This study shows the differential expression of TIM-3 on different immune cells in circulation and TME of CRC patients, and their associations with disease stages.


Assuntos
Neoplasias Colorretais/sangue , Neoplasias Colorretais/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/sangue , Microambiente Tumoral/fisiologia , Células Apresentadoras de Antígenos/metabolismo , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Células Cultivadas , Humanos , Monócitos/metabolismo , Células Mieloides/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T/metabolismo
13.
Cancer Immunol Immunother ; 69(3): 449-463, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31932876

RESUMO

Lactate dehydrogenase C (LDHC) is an archetypical cancer testis antigen with limited expression in adult tissues and re-expression in tumors. This restricted expression pattern together with the important role of LDHC in cancer metabolism renders LDHC a potential target for immunotherapy. This study is the first to investigate the immunogenicity of LDHC using T cells from healthy individuals. LDHC-specific T cell responses were induced by in vitro stimulation with synthetic peptides, or by priming with autologous peptide-pulsed dendritic cells. We evaluated T cell activation by IFN-γ ELISpot and determined cytolytic activity of HLA-A*0201-restricted T cells in breast cancer cell co-cultures. In vitro T cell stimulation induced IFN-γ secretion in response to numerous LDHC-derived peptides. Analysis of HLA-A*0201 responses revealed a significant T cell activation after stimulation with peptide pools 2 (PP2) and 8 (PP8). The PP2- and PP8-specific T cells displayed cytolytic activity against breast cancer cells with endogenous LDHC expression within a HLA-A*0201 context. We identified peptides LDHC41-55 and LDHC288-303 from PP2 and PP8 to elicit a functional cellular immune response. More specifically, we found an increase in IFN-γ secretion by CD8 + T cells and cancer-cell-killing of HLA-A*0201/LDHC positive breast cancer cells by LDHC41-55- and LDHC288-303-induced T cells, albeit with a possible antigen recognition threshold. The majority of induced T cells displayed an effector memory phenotype. To conclude, our findings support the rationale to assess LDHC as a targetable cancer testis antigen for immunotherapy, and in particular the HLA-A*0201 restricted LDHC41-55 and LDHC288-303 peptides within LDHC.


Assuntos
Epitopos de Linfócito T/imunologia , Antígeno HLA-A2/imunologia , Imunoterapia/métodos , L-Lactato Desidrogenase/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Isoenzimas/imunologia , Masculino
14.
Cancer Immunol Immunother ; 69(10): 1989-1999, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32393998

RESUMO

Despite recent advances in colorectal cancer (CRC) treatment, a large proportion of patients show limited responses to therapies, especially in advanced stages. There is an urgent need to identify prognostic biomarkers and/or therapeutic targets in advanced stages, aiming to improve the efficacy of current treatments. We aimed to determine prognostic biomarkers in tumor tissue and circulation of CRC patients, with a special focus on T cell exhaustion markers. We found that mRNA levels of PD-1, TIM-3, CTLA-4, TIGIT, CD160, CD244, KLRG1, TOX2, TOX3, Ki-67, and PRDM1 were elevated in CRC tumor tissues. We also investigated differences in gene expression between early and advanced disease stages. We found that TOX and potentially TIM-3, CTLA-4, VISTA, TIGIT, KLRG1, TOX2, SIRT1, Ki-67, and Helios mRNA levels in tumor tissue were elevated in advanced disease stages, suggesting their potential roles in CRC progression. In contrast, PD-1 and CD160 levels in tumor tissue were downregulated in advanced stages. In the circulation of CRC patients, mRNA levels of PD-1, VISTA and LAG-3 were higher than those of healthy individuals. Moreover, in circulation, PD-1, CTLA-4 and TIGIT mRNA levels were reduced in advanced stages. Interestingly, levels of PD-1 in both tumor tissue and circulation were reduced in advanced stages, suggesting that targeting PD-1 in patients with advanced stages could be less effective. Altogether, these findings suggest some potential T cell exhaustion markers that could be utilized as prognostic biomarkers and/or therapeutic targets for CRC. However, further investigations and validations in larger cohorts are required to confirm these findings.


Assuntos
Biomarcadores Tumorais/sangue , Antígeno CTLA-4/sangue , Neoplasias Colorretais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Receptor de Morte Celular Programada 1/sangue , Receptores Imunológicos/sangue , Linfócitos T/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Antígeno CTLA-4/genética , Estudos de Casos e Controles , Neoplasias Colorretais/sangue , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Receptor de Morte Celular Programada 1/genética , Receptores Imunológicos/genética , Linfócitos T/metabolismo , Linfócitos T/patologia , Adulto Jovem
15.
Immunol Cell Biol ; 96(1): 21-33, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29359507

RESUMO

Regulatory T cells (Tregs) play essential roles in immune homeostasis; however, their role in tumor microenvironment (TME) is not completely evident. Several studies reported that infiltration of Tregs into various tumor tissues promotes tumor progression by limiting antitumor immunity and supporting tumor immune evasion. Furthermore, in TME, Tregs include heterogeneous subsets of cells expressing different immunosuppressive molecules favoring tumor progression. For an effective cancer therapy, it is critical to understand the Treg heterogeneity and biology in the TME. Recent studies have shown that immune checkpoint molecules promote cancer progression through various antitumor inhibitory mechanisms. Recent advances in cancer immunotherapy have shown the promising potentials of immune checkpoint inhibitors (ICIs) in inducing antitumor immune responses and clinical benefits in patients with cancer at late stages. Most studies revealed the effect of ICIs on T effector cells, and little is known about their effect on Tregs. In this review, we highlight the effects of the ICIs, including anti-CTLA-4, anti-PD-1/PD-L1, anti-LAG-3, anti-TIM-3, and anti-TIGIT, on tumor-infiltrating and peripheral Tregs to elicit effector T-cell functions against tumors. Additionally, we discuss how ICIs may target Tregs for cancer immunotherapy.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Imunoterapia/métodos , Neoplasias/terapia , Linfócitos T Reguladores/imunologia , Animais , Receptores Coestimuladores e Inibidores de Linfócitos T/imunologia , Humanos , Ativação Linfocitária , Neoplasias/imunologia , Evasão Tumoral , Microambiente Tumoral
16.
Immunol Cell Biol ; 96(9): 888-897, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29635843

RESUMO

Immune evasion is a characteristic of most human malignancies and is induced via various mechanisms. Immunosuppressive cells, including myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg), are key mediators in assisting tumors to escape immune surveillance. Expansion of MDSC, Treg and elevated levels of immune checkpoints (IC) are frequently detected in the tumor microenvironment and periphery of cancer patients. Various therapeutic agents have been shown to target MDSC and to block IC for inducing anti-tumor immunity and reversal of tumor immune escape. Importantly, some recent studies have shown that MDSC targeting improves the efficacy of IC blockade in cancer therapy. However, there is a pressing need to improve our understanding of the distinct role of these cells to develop combination therapy that attacks tumor cells from all frontiers to improve cancer therapeutics. Herein, we discuss the role of MDSC in cancer progression, interactions with IC in the context of anti-cancer immunity and the current therapeutic strategies to target MDSC and block IC in cancer.


Assuntos
Imunoterapia , Células Supressoras Mieloides/imunologia , Neoplasias/terapia , Linfócitos T Reguladores/imunologia , Animais , Humanos , Tolerância Imunológica , Neoplasias/imunologia , Evasão Tumoral , Microambiente Tumoral
17.
Cancer Immunol Immunother ; 66(6): 753-764, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28283696

RESUMO

Pathological conditions including cancers lead to accumulation of a morphological mixture of highly immunosuppressive cells termed as myeloid-derived suppressor cells (MDSC). The lack of conclusive markers to identify human MDSC, due to their heterogeneous nature and close phenotypical and functional proximity with other cell subsets, made it challenging to identify these cells. Nevertheless, expansion of MDSC has been reported in periphery and tumor microenvironment of various cancers. The majority of studies on breast cancers were performed on murine models and hence limited literature is available on the relation of MDSC accumulation with clinical settings in breast cancer patients. The aim of this study was to investigate levels and phenotypes of myeloid cells in peripheral blood (n = 23) and tumor microenvironment of primary breast cancer patients (n = 7), compared with blood from healthy donors (n = 21) and paired non-tumor normal breast tissues from the same patients (n = 7). Using multicolor flow cytometric assays, we found that breast cancer patients had significantly higher levels of tumor-infiltrating myeloid cells, which comprised of granulocytes (P = 0.022) and immature cells that lack the expression of markers for fully differentiated monocytes or granulocytes (P = 0.016). Importantly, this expansion was not reflected in the peripheral blood. The immunosuppressive potential of these cells was confirmed by expression of Arginase 1 (ARG1), which is pivotal for T-cell suppression. These findings are important for developing therapeutic modalities to target mechanisms employed by immunosuppressive cells that generate an immune-permissive environment for the progression of cancer.


Assuntos
Neoplasias da Mama/patologia , Mama/patologia , Células Mieloides/patologia , Evasão Tumoral , Microambiente Tumoral/imunologia , Adulto , Idoso , Arginase/metabolismo , Mama/imunologia , Mama/metabolismo , Neoplasias da Mama/sangue , Neoplasias da Mama/imunologia , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-Idade , Células Mieloides/imunologia , Células Mieloides/metabolismo , Gradação de Tumores , Invasividade Neoplásica , Estadiamento de Neoplasias , Prognóstico , Adulto Jovem
19.
Semin Cancer Biol ; 35 Suppl: S185-S198, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25818339

RESUMO

Cancer immune evasion is a major stumbling block in designing effective anticancer therapeutic strategies. Although considerable progress has been made in understanding how cancers evade destructive immunity, measures to counteract tumor escape have not kept pace. There are a number of factors that contribute to tumor persistence despite having a normal host immune system. Immune editing is one of the key aspects why tumors evade surveillance causing the tumors to lie dormant in patients for years through "equilibrium" and "senescence" before re-emerging. In addition, tumors exploit several immunological processes such as targeting the regulatory T cell function or their secretions, antigen presentation, modifying the production of immune suppressive mediators, tolerance and immune deviation. Besides these, tumor heterogeneity and metastasis also play a critical role in tumor growth. A number of potential targets like promoting Th1, NK cell, γδ T cell responses, inhibiting Treg functionality, induction of IL-12, use of drugs including phytochemicals have been designed to counter tumor progression with much success. Some natural agents and phytochemicals merit further study. For example, use of certain key polysaccharide components from mushrooms and plants have shown to possess therapeutic impact on tumor-imposed genetic instability, anti-growth signaling, replicative immortality, dysregulated metabolism etc. In this review, we will discuss the advances made toward understanding the basis of cancer immune evasion and summarize the efficacy of various therapeutic measures and targets that have been developed or are being investigated to enhance tumor rejection.


Assuntos
Carcinogênese/imunologia , Evasão da Resposta Imune , Neoplasias/imunologia , Neoplasias/terapia , Apresentação de Antígeno/imunologia , Carcinogênese/efeitos dos fármacos , Humanos , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/imunologia , Neoplasias/patologia , Compostos Fitoquímicos/uso terapêutico , Linfócitos T Reguladores/imunologia , Evasão Tumoral/efeitos dos fármacos , Evasão Tumoral/imunologia
20.
Semin Cancer Biol ; 35 Suppl: S276-S304, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26590477

RESUMO

Targeted therapies and the consequent adoption of "personalized" oncology have achieved notable successes in some cancers; however, significant problems remain with this approach. Many targeted therapies are highly toxic, costs are extremely high, and most patients experience relapse after a few disease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistant immortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are not reliant upon the same mechanisms as those which have been targeted). To address these limitations, an international task force of 180 scientists was assembled to explore the concept of a low-toxicity "broad-spectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspects of relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a wide range of high-priority targets (74 in total) that could be modified to improve patient outcomes. For these targets, corresponding low-toxicity therapeutic approaches were then suggested, many of which were phytochemicals. Proposed actions on each target and all of the approaches were further reviewed for known effects on other hallmark areas and the tumor microenvironment. Potential contrary or procarcinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixed evidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of the relationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. This novel approach has potential to be relatively inexpensive, it should help us address stages and types of cancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for future research is offered.


Assuntos
Heterogeneidade Genética , Terapia de Alvo Molecular , Neoplasias/terapia , Medicina de Precisão , Antineoplásicos Fitogênicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/prevenção & controle , Transdução de Sinais , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa