Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Eur J Appl Physiol ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459192

RESUMO

PURPOSE: Resistance training-induced skeletal muscle hypertrophy seems to depend on ribosome biogenesis and content. High glucose treatment may augment ribosome biogenesis through potentiating resistance training-induced adaptations. This was investigated with total RNA and ribosomal RNA abundances as main outcomes, with relevant transcriptional/translational regulators (c-Myc/UBF/rpS6) as a secondary outcome. METHODS: Sixteen healthy, moderately trained individuals [male/female, n = 9/7; age, 24.1 (3.3)] participated in a within-participant crossover trial with unilateral resistance training (leg press and knee extension, 3 sets of 10 repetitions maximum) and pre- and post-exercise ingestion of either glucose (3 × 30 g, 90 g total) or placebo supplements (Stevia rebaudiana, 3 × 0.3 g, 0.9 g total), together with protein (2 × 25 g, 50 g total), on alternating days for 12 days. Six morning resistance exercise sessions were conducted per condition, and the sessions were performed in an otherwise fasted state. Micro-biopsies were sampled from m. vastus lateralis before and after the intervention. RESULTS: Glucose ingestion did not have beneficial effects on resistance training-induced increases of ribosomal content (mean difference 7.6% [- 7.2, 24.9], p = 0.34; ribosomal RNA, 47S/18S/28S/5.8S/5S, range 7.6-37.9%, p = 0.40-0.98) or levels of relevant transcriptional or translational regulators (c-MYK/UBF/rpS6, p = 0.094-0.292). Of note, both baseline and trained state data of total RNA showed a linear relationship with UBF; a ∼14% increase in total RNA corresponded to 1 SD unit increase in UBF (p = 0.003). CONCLUSION: Glucose ingestion before and after resistance training sessions did not augment ribosomal RNA accumulation during twelve days of heavy-load resistance training in moderately trained young adults.

2.
BMC Bioinformatics ; 23(1): 241, 2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717158

RESUMO

BACKGROUND: The biological relevance and accuracy of gene expression data depend on the adequacy of data normalization. This is both due to its role in resolving and accounting for technical variation and errors, and its defining role in shaping the viewpoint of biological interpretations. Still, the choice of the normalization method is often not explicitly motivated although this choice may be particularly decisive for conclusions in studies involving pronounced cellular plasticity. In this study, we highlight the consequences of using three fundamentally different modes of normalization for interpreting RNA-seq data from human skeletal muscle undergoing exercise-training-induced growth. Briefly, 25 participants conducted 12 weeks of high-load resistance training. Muscle biopsy specimens were sampled from m. vastus lateralis before, after two weeks of training (week 2) and after the intervention (week 12), and were subsequently analyzed using RNA-seq. Transcript counts were modeled as (1) per-library-size, (2) per-total-RNA, and (3) per-sample-size (per-mg-tissue). RESULT: Initially, the three modes of transcript modeling led to the identification of three unique sets of stable genes, which displayed differential expression profiles. Specifically, genes showing stable expression across samples in the per-library-size dataset displayed training-associated increases in per-total-RNA and per-sample-size datasets. These gene sets were then used for normalization of the entire dataset, providing transcript abundance estimates corresponding to each of the three biological viewpoints (i.e., per-library-size, per-total-RNA, and per-sample-size). The different normalization modes led to different conclusions, measured as training-associated changes in transcript expression. Briefly, for 27% and 20% of the transcripts, training was associated with changes in expression in per-total-RNA and per-sample-size scenarios, but not in the per-library-size scenario. At week 2, this led to opposite conclusions for 4% of the transcripts between per-library-size and per-sample-size datasets (↑ vs. ↓, respectively). CONCLUSION: Scientists should be explicit with their choice of normalization strategies and should interpret the results of gene expression analyses with caution. This is particularly important for data sets involving a limited number of genes or involving growing or differentiating cellular models, where the risk of biased conclusions is pronounced.


Assuntos
RNA , Transcriptoma , Biblioteca Gênica , Humanos , Hipertrofia , Músculo Esquelético
3.
Scand J Med Sci Sports ; 32(7): 1089-1098, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35305278

RESUMO

PURPOSE: The primary purpose was to test the effect of heat suit training on hemoglobin mass (Hbmass ) in elite cross-country (XC) skiers. METHODS: Twenty-five male XC-skiers were divided into a group that added 5 × 50 min weekly heat suit training sessions to their regular training (HEAT; n = 13, 23 ± 5 years, 73.9 ± 5.2 kg, 180 ± 6 cm, 76.8 ± 4.6 ml·min-1 ·kg-1 ) or to a control group matched for training volume and intensity distribution (CON; n = 12, 23 ± 4 years, 78.4 ± 5.8 kg, 184 ± 4 cm, 75.2 ± 3.4 ml·min-1 ·kg-1 ) during the five-week intervention period. Hbmass , endurance performance and factors determining endurance performance were assessed before and after the intervention. RESULTS: HEAT led to 30 g greater Hbmass (95% CI: [8.5, 51.7], p = 0.009) and 157 ml greater red blood cell volume ([29, 285], p = 0.018) post-intervention, compared to CON when adjusted for baseline values. In contrast, no group differences were observed for changes in work economy, running velocity, and fractional utilization of maximal oxygen uptake (V̇O2max ) at 4 mmol·L-1 blood lactate, V̇O2max or 15-min running distance performance trial during the intervention. CONCLUSION: HEAT induced a larger increase in Hbmass and red blood cell volume after five weeks with five weekly heat suit training sessions than CON, but with no detectable group differences on physiological determinants of endurance performance or actual endurance performance in elite CX skiers.


Assuntos
Consumo de Oxigênio , Corrida , Volume de Eritrócitos , Hemoglobinas/análise , Temperatura Alta , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Resistência Física/fisiologia
4.
J Transl Med ; 19(1): 292, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34229714

RESUMO

BACKGROUND: Subjects with chronic obstructive pulmonary disease (COPD) are prone to accelerated decay of muscle strength and mass with advancing age. This is believed to be driven by disease-inherent systemic pathophysiologies, which are also assumed to drive muscle cells into a state of anabolic resistance, leading to impaired abilities to adapt to resistance exercise training. Currently, this phenomenon remains largely unstudied. In this study, we aimed to investigate the assumed negative effects of COPD for health- and muscle-related responsiveness to resistance training using a healthy control-based translational approach. METHODS: Subjects with COPD (n = 20, GOLD II-III, FEV1predicted 57 ± 11%, age 69 ± 5) and healthy controls (Healthy, n = 58, FEV1predicted 112 ± 16%, age 67 ± 4) conducted identical whole-body resistance training interventions for 13 weeks, consisting of two weekly supervised training sessions. Leg exercises were performed unilaterally, with one leg conducting high-load training (10RM) and the contralateral leg conducting low-load training (30RM). Measurements included muscle strength (nvariables = 7), endurance performance (nvariables = 6), muscle mass (nvariables = 3), muscle quality, muscle biology (m. vastus lateralis; muscle fiber characteristics, RNA content including transcriptome) and health variables (body composition, blood). For core outcome domains, weighted combined factors were calculated from the range of singular assessments. RESULTS: COPD displayed well-known pathophysiologies at baseline, including elevated levels of systemic low-grade inflammation ([c-reactive protein]serum), reduced muscle mass and functionality, and muscle biological aberrancies. Despite this, resistance training led to improved lower-limb muscle strength (15 ± 8%), muscle mass (7 ± 5%), muscle quality (8 ± 8%) and lower-limb/whole-body endurance performance (26 ± 12%/8 ± 9%) in COPD, resembling or exceeding responses in Healthy, measured in both relative and numeric change terms. Within the COPD cluster, lower FEV1predicted was associated with larger numeric and relative increases in muscle mass and superior relative improvements in maximal muscle strength. This was accompanied by similar changes in hallmarks of muscle biology such as rRNA-content↑, muscle fiber cross-sectional area↑, type IIX proportions↓, and changes in mRNA transcriptomics. Neither of the core outcome domains were differentially affected by resistance training load. CONCLUSIONS: COPD showed hitherto largely unrecognized responsiveness to resistance training, rejecting the notion of disease-related impairments and rather advocating such training as a potent measure to relieve pathophysiologies. TRIAL REGISTRATION: ClinicalTrials.gov ID: NCT02598830. Registered November 6th 2015, https://clinicaltrials.gov/ct2/show/NCT02598830.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Treinamento Resistido , Idoso , Estudos Transversais , Tolerância ao Exercício , Humanos , Pessoa de Meia-Idade , Força Muscular , Músculo Esquelético
5.
Scand J Med Sci Sports ; 31(3): 529-541, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33113253

RESUMO

This study investigated the acute effects of including 30-second sprints during prolonged low-intensity cycling on muscular and hormonal responses and recovery in elite cyclists. Twelve male cyclists (VO2max , 73.4 ± 4.0 mL/kg/min) completed a randomized crossover protocol, wherein 4 hours of cycling at 50% of VO2max were performed with and without inclusion of three sets of 3 × 30 seconds maximal sprints (E&S vs E, work-matched). Muscle biopsies (m. vastus lateralis) and blood were sampled at Pre, immediately after (Post) and 3 hours after (3 h) finalizing sessions. E&S led to greater increases in mRNA levels compared with E for markers of fat metabolism (PDK4, Δ-Log2 fold change between E&S and E ± 95%CI Post; 2.1 ± 0.9, Δ3h; 1.3 ± 0.7) and angiogenesis (VEGFA, Δ3h; 0.3 ± 0.3), and greater changes in markers of muscle protein turnover (myostatin, ΔPost; -1.4 ± 1.2, Δ3h; -1.3 ± 1.3; MuRF1, ΔPost; 1.5 ± 1.2, all P < .05). E&S showed decreased mRNA levels for markers of ion transport at 3h (Na+ -K+ α1; -0.6 ± 0.6, CLC1; -1.0 ± 0.8 and NHE1; -0.3 ± 0.2, all P < .05) and blunted responses for a marker of mitochondrial biogenesis (PGC-1α, Post; -0.3 ± 0.3, 3h; -0.4 ± 0.3, P < .05) compared with E E&S and E showed similar endocrine responses, with exceptions of GH and SHBG, where E&S displayed lower responses at Post (GH; -4.1 ± 3.2 µg/L, SHBG; -2.2 ± 1.9 nmol/L, P < .05). Both E&S and E demonstrated complete recovery in isokinetic knee extension torque 24 hours after exercise. In conclusion, we demonstrate E&S to be an effective exercise protocol for elite cyclists, which potentially leads to beneficial adaptations in skeletal muscle without impairing muscle recovery 24 hours after exercise.


Assuntos
Ciclismo/fisiologia , Hormônios/sangue , Condicionamento Físico Humano/métodos , Músculo Quadríceps/fisiologia , Adulto , Estudos Cross-Over , Metabolismo Energético , Humanos , Transporte de Íons , Joelho/fisiologia , Masculino , Proteínas Musculares/biossíntese , Proteínas Musculares/metabolismo , Neovascularização Fisiológica , Biogênese de Organelas , Condicionamento Físico Humano/fisiologia , RNA Mensageiro/metabolismo , Adulto Jovem
6.
BMC Bioinformatics ; 21(1): 548, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256614

RESUMO

BACKGROUND: Human skeletal muscle responds to weight-bearing exercise with significant inter-individual differences. Investigation of transcriptome responses could improve our understanding of this variation. However, this requires bioinformatic pipelines to be established and evaluated in study-specific contexts. Skeletal muscle subjected to mechanical stress, such as through resistance training (RT), accumulates RNA due to increased ribosomal biogenesis. When a fixed amount of total-RNA is used for RNA-seq library preparations, mRNA counts are thus assessed in different amounts of tissue, potentially invalidating subsequent conclusions. The purpose of this study was to establish a bioinformatic pipeline specific for analysis of RNA-seq data from skeletal muscles, to explore the effects of different normalization strategies and to identify genes responding to RT in a volume-dependent manner (moderate vs. low volume). To this end, we analyzed RNA-seq data derived from a twelve-week RT intervention, wherein 25 participants performed both low- and moderate-volume leg RT, allocated to the two legs in a randomized manner. Bilateral muscle biopsies were sampled from m. vastus lateralis before and after the intervention, as well as before and after the fifth training session (Week 2). RESULT: Bioinformatic tools were selected based on read quality, observed gene counts, methodological variation between paired observations, and correlations between mRNA abundance and protein expression of myosin heavy chain family proteins. Different normalization strategies were compared to account for global changes in RNA to tissue ratio. After accounting for the amounts of muscle tissue used in library preparation, global mRNA expression increased by 43-53%. At Week 2, this was accompanied by dose-dependent increases for 21 genes in rested-state muscle, most of which were related to the extracellular matrix. In contrast, at Week 12, no readily explainable dose-dependencies were observed. Instead, traditional normalization and non-normalized models resulted in counterintuitive reverse dose-dependency for many genes. Overall, training led to robust transcriptome changes, with the number of differentially expressed genes ranging from 603 to 5110, varying with time point and normalization strategy. CONCLUSION: Optimized selection of bioinformatic tools increases the biological relevance of transcriptome analyses from resistance-trained skeletal muscle. Moreover, normalization procedures need to account for global changes in rRNA and mRNA abundance.


Assuntos
Biologia Computacional , Perfilação da Expressão Gênica , Músculo Esquelético/metabolismo , Adulto , Biblioteca Gênica , Humanos , Masculino , Músculo Esquelético/fisiologia , RNA Mensageiro/genética , Treinamento Resistido , Adulto Jovem
7.
J Physiol ; 598(3): 543-565, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31813190

RESUMO

KEY POINTS: For individuals showing suboptimal adaptations to resistance training, manipulation of training volume is a potential measure to facilitate responses. This remains unexplored. Here, 34 untrained individuals performed contralateral resistance training with moderate and low volume for 12 weeks. Moderate volume led to larger increases in muscle cross-sectional area, strength and type II fibre-type transitions. These changes coincided with greater activation of signalling pathways controlling muscle growth and greater induction of ribosome synthesis. Out of 34 participants, thirteen displayed clear benefit of MOD on muscle hypertrophy and sixteen showed clear benefit of MOD on muscle strength gains. This coincided with greater total RNA accumulation in the early phase of the training period, suggesting that ribosomal biogenesis regulates the dose-response relationship between training volume and muscle hypertrophy. These results demonstrate that there is a dose-dependent relationship between training volume and outcomes. On the individual level, benefits of higher training volume were associated with increased ribosomal biogenesis. ABSTRACT: Resistance-exercise volume is a determinant of training outcomes. However not all individuals respond in a dose-dependent fashion. In this study, 34 healthy individuals (males n = 16, 23.6 (4.1) years; females n = 18, 22.0 (1.3) years) performed moderate- (3 sets per exercise, MOD) and low-volume (1 set, LOW) resistance training in a contralateral fashion for 12 weeks (2-3 sessions per week). Muscle cross-sectional area (CSA) and strength were assessed at Weeks 0 and 12, along with biopsy sampling (m. vastus lateralis). Muscle biopsies were also sampled before and 1 h after the fifth session (Week 2). MOD resulted in larger increases in muscle CSA (5.2 (3.8)% versus 3.7 (3.7)%, P < 0.001) and strength (3.4-7.7% difference, all P < 0.05. This coincided with greater reductions in type IIX fibres from Week 0 to Week 12 (MOD, -4.6 percentage points; LOW -3.2 percentage points), greater phosphorylation of S6-kinase 1 (p85 S6K1Thr412 , 19%; p70 S6K1Thr389 , 58%) and ribosomal protein S6Ser235/236 (37%), greater rested-state total RNA (8.8%) and greater exercise-induced c-Myc mRNA expression (25%; Week 2, all P < 0.05). Thirteen and sixteen participants, respectively, displayed clear benefits in response to MOD on muscle hypertrophy and strength. Benefits were associated with greater accumulation of total RNA at Week 2 in the MOD leg, with every 1% difference increasing the odds of MOD benefit by 7.0% (P = 0.005) and 9.8% (P = 0.002). In conclusion, MOD led to greater functional and biological adaptations than LOW. Associations between dose-dependent total RNA accumulation and increases in muscle mass and strength point to ribosome biogenesis as a determinant of dose-dependent training responses.


Assuntos
Treinamento Resistido , Exercício Físico , Feminino , Humanos , Masculino , Força Muscular , Músculo Esquelético , Ribossomos
8.
Scand J Med Sci Sports ; 30(7): 1140-1150, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32267032

RESUMO

The purpose of this study was to compare the acute effects of time- and effort-matched high-intensity intervals on physiological, endocrine, and skeletal muscle molecular variables in elite cyclists. Eight elite cyclists performed short intervals (SI: 30-seconds) and long intervals (LI: 5-minutes) with work:recovery ratio 2:1, using a randomized crossover design. SI was associated with 14% ± 3% higher mean power output (SI; 421 ± 27 vs LI; 371 ± 22 W), and longer working time above 90% of maximal oxygen uptake (VO2max , 54% ± 76%) and 90% peak heart rate (HRpeak , 153% ± 148%) than LI (all P < .05), despite similar degrees of perceived exertion, blood lactate levels and muscle activation measured using EMG root mean square (EMG rms). In blood, SI was associated with more pronounced increases in testosterone and testosterone-to-sex hormone-binding globulin (SHBG) ratios, as well as prolonged cortisol responses (P < .05). In skeletal muscle (m. Vastus lateralis), SI and LI led to similar changes in mRNA abundance for a range of transcripts, with the exception of NHE1 mRNA, which decreased after SI (P < .05). Overall, SI was associated with more pronounced physiological and endocrine responses than LI in elite cyclists, suggesting that such training might lead to superior adaptations in elite cyclists.


Assuntos
Ciclismo/fisiologia , Biomarcadores/sangue , Treinamento Intervalado de Alta Intensidade/métodos , Resistência Física , Músculo Quadríceps/fisiologia , Adaptação Fisiológica , Adulto , Atletas , Estudos Cross-Over , Expressão Gênica , Humanos , Masculino , Adulto Jovem
9.
Scand J Med Sci Sports ; 30(5): 865-877, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32034812

RESUMO

In this study, we compare the effects of isocaloric high- (HIGH: 2 g kg-1  d-1 , n = 19) and low-protein diet (LOW: 1 g kg-1  d-1 , n = 19) on changes in body composition, muscle strength, and endocrine variables in response to a 10-day military field exercise with energy deficit, followed by 7 days of recovery. Body composition (DXA), one repetition maximum (1RM) bench and leg press, counter-movement jump height (CMJ) and blood variables were assessed before and after the exercise. Performance and blood variables were reassessed after 7 days of recovery. The 10-day exercise resulted in severe energy deficit in both LOW and HIGH (-4373 ± 1250, -4271 ± 1075 kcal d-1 ) and led to decreased body mass (-6.1%, -5.2%), fat mass (-40.5%, -33.4%), 1RM bench press (-9.5%, -9.7%), 1RM leg press (-7.8%, -8.3%), and CMJ (-14.7%, -14.6%), with no differences between groups. No change was seen for fat-free mass. In both groups, the exercise led to a switch toward a catabolic physiological milieu, evident as reduced levels of anabolic hormones (testosterone, IGF-1) and increased levels of cortisol (more pronounced in HIGH, P < .05). Both groups also displayed substantial increases in creatine kinase. After 7 days of recovery, most variables had returned to close-to pre-exercise levels, except for CMJ, which remained at reduced levels. In conclusion, increased protein intake during 10-day military field exercise with severe energy deficiency did not mitigate loss of body mass or impairment of physical performance.


Assuntos
Composição Corporal , Dieta Rica em Proteínas , Metabolismo Energético , Militares , Força Muscular , Desempenho Físico Funcional , Biomarcadores/sangue , Dieta com Restrição de Carboidratos , Feminino , Humanos , Masculino , Adulto Jovem
10.
Eur J Appl Physiol ; 120(7): 1541-1549, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32372216

RESUMO

PURPOSE: The purpose of this study was to investigate if endurance athletes, sustaining their normal endurance training, experience attenuated adaptations to strength training compared to untrained individuals. METHODS: Eleven non-strength-trained female endurance athletes (E + S) added 11 weeks of strength training to their normal endurance training (5.1 ± 1.1 h per week), and 10 untrained women (S) performed the same strength training without any endurance training. The strength training consisted of four leg exercises [3 × 4 - 10 repetition maximum (RM)], performed twice a week for 11 weeks. RESULTS: E + S and S displayed similar increases in 1RM one-legged leg press (E + S 39 ± 19%, S 42 ± 17%, p < 0.05), maximal isometric torque in knee extension (E + S 12 ± 11%, S 8 ± 10%, p < 0.05) and lean mass in the legs (E + S 3 ± 4%, S 3 ± 3%, p < 0.05). However, S displayed superior increases in peak torque in knee extension at an angular velocity of 240° sec-1 (E + S 8 ± 5%, S 15 ± 7%, p < 0.05) and maximal squat jump height (E + S 8 ± 6%, S 14 ± 7%, p < 0.05). CONCLUSIONS: In this study, concurrent training did not impair the adaptations in the ability to develop force at low contraction velocities or muscle hypertrophy. However, concurrent training attenuated strength training-associated changes in the ability to develop force at higher muscular contraction velocities.


Assuntos
Adaptação Fisiológica/fisiologia , Contração Muscular/fisiologia , Resistência Física/fisiologia , Treinamento Resistido , Adulto , Atletas , Treino Aeróbico , Feminino , Humanos , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Levantamento de Peso/fisiologia
11.
Scand J Med Sci Sports ; 29(2): 180-188, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30350896

RESUMO

Team sports like ice hockey require high levels of performance in numerous physical characteristics such as strength, power, and endurance. As such, training is associated with a potential interference effect. The present study randomized well-trained ice hockey players into a block periodization group (BP; n = 8), focusing on the development of either strength and power or endurance on a weekly, undulating basis, and a traditional group (TRAD; n = 8), performing a mixed training model, with simultaneous focus of strength, power, and endurance training every week. During the 6-week intervention, the two groups performed equal volumes and intensities of both strength, power, and endurance training. BP led to larger improvements than TRAD in knee extension peak torque at 180° s-1 (6.6 ± 8.7 vs -4.2% ± 6.3%, respectively; P < 0.05) and maximal oxygen uptake (5.1 ± 3.3 vs 1.1% ± 3.5%, respectively; P < 0.05). There was also a trend toward larger improvements in BP than TRAD in peak torque in knee extension at 60° s-1 (2.1 ± 2.5 vs -0.1% ± 2.5%, respectively; P < 0.1, effect size = 0.83) and mean power output during a 30-s cycling sprint (4.1 ± 2.5 vs -0.3% ± 5.9%, respectively; P < 0.1, effect size = 0.89). Overall, BP exhibited a moderate to large effect size for all these variables compared to TRAD. The present study suggests that block periodization of strength and endurance training induces superior adaptations in both strength and endurance capacities in well-trained ice hockey players compared to traditional mixed organization, despite similar training volume and intensity.


Assuntos
Treino Aeróbico , Hóquei , Força Muscular , Resistência Física , Treinamento Resistido , Adaptação Fisiológica , Adolescente , Treinamento Intervalado de Alta Intensidade , Humanos , Masculino , Consumo de Oxigênio , Exercício Pliométrico
12.
Eur J Appl Physiol ; 117(4): 787-794, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28255731

RESUMO

PURPOSE: Systemic inflammation is involved in the development of several diseases, including cardiovascular disease and type 2 diabetes. It is known that vigorous exercise affects systemic inflammation, but less is known about exercise at lower intensities. Hyperglycemia can also entail pro-inflammatory responses; however, postprandial hyperglycemia is blunted if the meal is followed by exercise. Hypotheses were: (1) moderate physical exercise acutely affects levels of C-reactive protein (CRP) and serum soluble vascular cell adhesion molecule 1 (sVCAM-1) in hyperglycemic individuals and (2) the effect depends on whether the activity is performed in a post-absorptive or postprandial state. METHODS: Twelve participants diagnosed with hyperglycemia, but not using anti-diabetic medication, underwent three test days in a randomized cross-over study; 1 control day without exercise, 1 day with 60 min of treadmill walking ending 30 min before breakfast, and 1 day with an identical bout of activity 30 min after the start of breakfast. Food intake was strictly standardized and venous blood for CRP, and sVCAM-1 analysis was sampled at standardized timepoints during the first 3.5 h after breakfast and once 24 h later. RESULTS: Merged data from the two exercise days showed that sVCAM-1 increased from baseline (4 ± 16 ng/mL) compared to the control condition (-28 ± 47 ng/mL, ES = 0.7, p = 0.024). There was no statistically significant difference in changes in sVCAM-1 levels between the two exercise test days. Exercise did not affect CRP values. CONCLUSION: Moderate exercise increases sVCAM-1 in hyperglycemic individuals, whereas it does not affect CRP.


Assuntos
Proteína C-Reativa/metabolismo , Terapia por Exercício , Exercício Físico , Hiperglicemia/sangue , Molécula 1 de Adesão de Célula Vascular/sangue , Idoso , Feminino , Humanos , Hiperglicemia/terapia , Masculino , Pessoa de Meia-Idade , Período Pós-Prandial
13.
Am J Physiol Cell Physiol ; 311(4): C616-C629, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27488660

RESUMO

It is often assumed that mechanical factors are important for effects of exercise on muscle, but during voluntary training and most experimental conditions the effects could solely be attributed to differences in electrical activity, and direct evidence for a mechanosensory pathway has been scarce. We here show that, in rat muscles stimulated in vivo under deep anesthesia with identical electrical activity patterns, isometric contractions induced twofold more hypertrophy than contractions with 50-60% of the isometric force. The number of myonuclei and the RNA levels of myogenin and myogenic regulatory factor 4 were increased with high load, suggesting that activation of satellite cells is mechano dependent. On the other hand, training induced a major shift in fiber type distribution from type 2b to 2x that was load independent, indicating that the electrical signaling rather than mechanosignaling controls fiber type. RAC-α serine/threonine-protein kinase (Akt) and ribosomal protein S6 kinase ß-1 (S6K1) were not significantly differentially activated by load, suggesting that the differences in mechanical factors were not important for activating the Akt/mammalian target of rapamycin/S6K1 pathway. The transmembrane molecule syndecan-4 implied in overload hypertrophy in cardiac muscle was not load dependent, suggesting that mechanosignaling in skeletal muscle is different.


Assuntos
Hipertrofia/fisiopatologia , Músculo Esquelético/fisiologia , Animais , Contração Isométrica/fisiologia , Músculo Esquelético/metabolismo , Miogenina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo
14.
J Strength Cond Res ; 30(4): 1021-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27447016

RESUMO

The phenomenon postactivation potentiation can possibly be used to acutely improve sprint performance. The purpose of this study was to investigate the effect of body-loaded half-squats with added whole body vibration (WBV) on subsequent 20 m on-ice sprint performance. Fifteen male ice-hockey players performed 4 test sessions on separate days and in a randomized order. Two of this test sessions were with WBV and 2 were with noWBV and the best sprint time was used to determine effectiveness. Each test session included preconditioning 30 seconds half-squat exercise, 2 of which were supplemented with 50 Hz WBV at a amplitude of 3 mm. One minute after the cessation of the preconditioning exercise, the 20 m sprint test was performed. Intermediate time was sampled after 10 m. Preconditioning exercise performed with 50 Hz WBV resulted in superior 10 m and 20 m sprint performance compared to preconditioning exercise performed without WBV (1.84 6 0.10 seconds vs. 1.89 6 0.10 seconds and 3.14 6 0.13 vs. 3.17 6 0.13 seconds, respectively, p # 0.01). There was no difference between the protocols in perceived well-being of the legs before the warm-up or after the warm up (p = 0.3). However, there was an improved well-being in the legs immediately after the preconditioning exercise with WBV (p , 0.05). In conclusion, preconditioning exercise performed with WBV at 50 Hz seems to enhance on-ice sprint performance in ice-hockey players. This suggests that coaches can incorporate such exercise into the preparation to specific sprint training to improve the quality of the training.


Assuntos
Desempenho Atlético/fisiologia , Hóquei/fisiologia , Condicionamento Físico Humano/métodos , Condicionamento Físico Humano/fisiologia , Vibração , Teste de Esforço , Humanos , Masculino , Distribuição Aleatória , Exercício de Aquecimento , Adulto Jovem
15.
Am J Physiol Regul Integr Comp Physiol ; 309(7): R767-79, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26202071

RESUMO

Limited data exist on the efficacy of low-load blood flow-restricted strength training (BFR), as compared directly to heavy-load strength training (HST). Here, we show that 12 wk of twice-a-week unilateral BFR [30% of one repetition maximum (1RM) to exhaustion] and HST (6-10RM) of knee extensors provide similar increases in 1RM knee extension and cross-sectional area of distal parts of musculus quadriceps femoris in nine untrained women (age 22 ± 1 yr). The two protocols resulted in similar acute increases in serum levels of human growth hormone. On the cellular level, 12 wk of BFR and HST resulted in similar shifts in muscle fiber composition in musculus vastus lateralis, evident as increased MyHC2A proportions and decreased MyHC2X proportions. They also resulted in similar changes of the expression of 29 genes involved in skeletal muscle function, measured both in a rested state following 12 wk of training and subsequent to singular training sessions. Training had no effect on myonuclei proportions. Of particular interest, 1) gross adaptations to BFR and HST were greater in individuals with higher proportions of type 2 fibers, 2) both BFR and HST resulted in approximately four-fold increases in the expression of the novel exercise-responsive gene Syndecan-4, and 3) BFR provided lesser hypertrophy than HST in the proximal half of musculus quadriceps femoris and also in CSApeak, potentially being a consequence of pressure from the tourniquet utilized to achieve blood flow restriction. In conclusion, BFR and HST of knee extensors resulted in similar adaptations in functional, physiological, and cell biological parameters in untrained women.


Assuntos
Força Muscular/genética , Força Muscular/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Treinamento Resistido/métodos , Anatomia Transversal , Biópsia , Contagem de Células , Feminino , Expressão Gênica , Hormônios/sangue , Humanos , Imuno-Histoquímica , Perna (Membro)/fisiologia , Imageamento por Ressonância Magnética , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , Torniquetes , Adulto Jovem
16.
J Strength Cond Res ; 28(3): 622-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23942166

RESUMO

The purpose of this study was to examine the relationship between lactate threshold (LT) as a percentage of maximal oxygen consumption (V[Combining Dot Above]O2max) and power output at LT (LTW) and also to investigate to what extent V[Combining Dot Above]O2max, oxygen cost of cycling (CC), and maximal aerobic power (MAP) determine LTW in cycling to develop a new time-saving model for testing LTW. To do this, 108 male competitive cyclists with an average V[Combining Dot Above]O2max of 65.2 ± 7.4 ml·kg·min and an average LTW of 274 ± 43 W were tested for V[Combining Dot Above]O2max, LT %V[Combining Dot Above]O2max, LTW, MAP, and CC on a test ergometer cycle. The product of MAP and individual LT in %V[Combining Dot Above]O2max was found to be a good determinant of LTW (R = 0.98, p < 0.0001). However, LT in %V[Combining Dot Above]O2max was found to be a poor determinant of LTW (R = 0.39, p < 0.0001). Based on these findings, we have suggested a new time-saving method for calculating LTW in well-trained cyclists. The benefits from this model come both from tracking LTW during training interventions and from regularly assessing training status in competitive cyclists. Briefly, this method is based on the present findings that LTW depends on LT in %V[Combining Dot Above]O2max, V[Combining Dot Above]O2max, and CC and may after an initial test session reduce the time for the subsequent testing of LTW by as much as 50% without the need for blood samples.


Assuntos
Limiar Anaeróbio/fisiologia , Ciclismo/fisiologia , Ácido Láctico/sangue , Consumo de Oxigênio/fisiologia , Esforço Físico/fisiologia , Adolescente , Adulto , Teste de Esforço , Humanos , Masculino , Conceitos Matemáticos , Pessoa de Meia-Idade , Aptidão Física/fisiologia , Adulto Jovem
17.
Med Sci Sports Exerc ; 56(4): 682-696, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37962228

RESUMO

PURPOSE: This study aimed to investigate the effects of a demanding military field exercise on physical performance, body composition, and muscle cellular outcomes in men and women. METHODS: Ten men (20.5 ± 0.5 yr) and 8 women (21.4 ± 1.4 yr) completed a 10-d field exercise consisting of extensive physical activity with food and sleep restriction. Acquisition of body composition, physical performance, blood, and muscle biopsies samples were done before and 1, 7, and 14 d after the exercise. RESULTS: There were no sex differences in the response to the exercise. Body mass was decreased with 5.6% ± 1.8% and fat mass with 31% ± 11% during the exercise. Both were still reduced after 14 d (2.5% ± 2.3%, P < 0.001, and 12.5% ± 7.7%, P < 0.001, respectively). Isometric leg strength did not change. Peak leg extension torque at 240°·s -1 and counter movement jump height were reduced with 4.6% ± 4.8% ( P = 0.012) and 6.7% ± 6.2% ( P < 0.001), respectively, and was still reduced after 14 d (4.3% ± 4.2%, P = 0.002, and 4.1% ± 4.7%, P = 0.030). No changes occurred in fiber CSA, fiber types, proteins involved in calcium handling, or HSP70. During the exercise, αB-crystallin levels decreased by 14% ± 19% ( P = 0.024) in the cytosolic fraction and staining intensity on muscle sections tended to increase (17% ± 25%, P = 0.076). MuRF1 levels in the cytosolic fraction tended to decrease (19% ± 35%) and increased with 85% ± 105% ( P = 0.003) in the cytoskeletal fraction 1 wk after the exercise. CONCLUSIONS: The field exercise resulted in reduced body mass and physical performance in both sexes. The ability to produce force at high contraction velocities and explosive strength was more affected than isometric strength, but this was not related to any changes in fiber type composition, fiber area, Ca 2+ handling, or fiber type-specific muscle damage.


Assuntos
Militares , Músculo Esquelético , Masculino , Humanos , Feminino , Músculo Esquelético/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Exercício Físico/fisiologia , Composição Corporal , Desempenho Físico Funcional , Força Muscular
18.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36986451

RESUMO

BACKGROUND: Changes in tryptophan metabolism through the kynurenine pathway (KP) are observed in several disorders and coupled with pathophysiological deviations. METHODS: This study retrospectively compared the KP in serum in healthy subjects (108) with subjects with obesity (141), depression (49), and chronic obstructive pulmonary disease (COPD) (22) participating in four clinical studies and explored predictors of the changes in the KP metabolites. RESULTS: Compared with the healthy group, the KP was upregulated in the disease groups with high kynurenine, quinolinic acid (QA), kynurenine/tryptophan-ratio and QA/xanthurenic acid-ratio and low kynurenic acid/QA-ratio. Tryptophan and xanthurenic acid were upregulated in the depressed group compared with the groups with obesity and COPD. The covariates BMI, smoking, diabetes, and C-reactive protein explained the significant differences between the healthy group and the group with obesity but not between the healthy group and the groups with depression and COPD, indicating that different pathophysiological conditions result in the same changes in the KP. CONCLUSIONS: The KP was significantly upregulated in the disease groups compared with the healthy group, and there were significant differences between the disease groups. Different pathophysiological abnormalities seemed to result in the same deviations in the KP.

19.
Acta Physiol (Oxf) ; 235(1): e13806, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35213791

RESUMO

AIM: To describe ribosome biogenesis during resistance training, its relation to training volume and muscle growth. METHODS: A training group (n = 11) performed 12 sessions (3-4 sessions per week) of unilateral knee extension with constant and variable volume (6 and 3-9 sets per session respectively) allocated to either leg. Ribosome abundance and biogenesis markers were assessed from vastus lateralis biopsies obtained at baseline, 48 hours after sessions 1, 4, 5, 8, 9 and 12, and after eight days of de-training, and from a control group (n = 8). Muscle thickness was measured before and after the intervention. RESULTS: Training led to muscle growth (3.9% over baseline values, 95% CrI: [0.2, 7.5] vs. control) with concomitant increases in total RNA, ribosomal RNA, upstream binding factor (UBF) and ribosomal protein S6 with no differences between volume conditions. Total RNA increased rapidly in response to the first four sessions (8.6% [5.6, 11.7] per session), followed by a plateau and peak values after session 8 (49.5% [34.5, 66.5] above baseline). Total RNA abundance was associated with UBF protein levels (5.0% [0.2, 10.2] per unit UBF), and the rate of increase in total RNA levels predicted hypertrophy (0.3 mm [0.1, 0.4] per %-point increase in total RNA per session). After de-training, total RNA decreased (-19.3% [-29.0, -8.1]) without muscle mass changes indicating halted biosynthesis of ribosomes. CONCLUSION: Ribosomes accumulate in the initial phase of resistance training with abundances sensitive to training cessation and associated with UBF protein levels. The average accumulation rate predicts muscle training-induced hypertrophy.


Assuntos
Treinamento Resistido , Humanos , Hipertrofia/metabolismo , Músculo Esquelético/metabolismo , RNA/metabolismo , Ribossomos/metabolismo
20.
Int J Sports Physiol Perform ; 17(3): 384-390, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34814113

RESUMO

PURPOSE: Accumulated time at a high percentage of peak oxygen consumption (VO2peak) is important for improving performance in endurance athletes. The present study compared the acute physiological and perceived effects of performing high-intensity intervals with roller ski double poling containing work intervals with (1) fast start followed by decreasing speed (DEC), (2) systematic variation in exercise intensity (VAR), and (3) constant speed (CON). METHODS: Ten well-trained cross-country skiers (double-poling VO2peak 69.6 [3.5] mL·min-1·kg-1) performed speed- and duration-matched DEC, VAR, and CON on 3 separate days in a randomized order (5 × 5-min work intervals and 3-min recovery). RESULTS: DEC and VAR led to longer time ≥90% VO2peak (P = .016 and P = .033, respectively) and higher mean %VO2peak (P = .036, and P = .009) compared with CON, with no differences between DEC and VAR (P = .930 and P = .759, respectively). VAR, DEC, and CON led to similar time ≥90% of peak heart rate (HRpeak), mean HR, mean breathing frequency, mean ventilation, and mean blood lactate concentration ([La-]). Furthermore, no differences between sessions were observed for perceptual responses, such as mean rate of perceived exertion, session rate of perceived exertion or pain score (all Ps > .147). CONCLUSIONS: In well-trained XC skiers, DEC and VAR led to longer time ≥90% of VO2peak compared with CON, without excessive perceptual effort, indicating that these intervals can be a good alternative for accumulating more time at a high percentage of VO2peak and at the same time mimicking the pronounced variation in exercise intensities experienced during XC-skiing competitions.


Assuntos
Consumo de Oxigênio , Esqui , Teste de Esforço , Humanos , Ácido Láctico , Oxigênio , Consumo de Oxigênio/fisiologia , Esqui/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa