Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070858

RESUMO

Variants in STUB1 cause both autosomal recessive (SCAR16) and dominant (SCA48) spinocerebellar ataxia. Reports from 18 STUB1 variants causing SCA48 show that the clinical picture includes later-onset ataxia with a cerebellar cognitive affective syndrome and varying clinical overlap with SCAR16. However, little is known about the molecular properties of dominant STUB1 variants. Here, we describe three SCA48 families with novel, dominantly inherited STUB1 variants (p.Arg51_Ile53delinsProAla, p.Lys143_Trp147del, and p.Gly249Val). All the patients developed symptoms from 30 years of age or later, all had cerebellar atrophy, and 4 had cognitive/psychiatric phenotypes. Investigation of the structural and functional consequences of the recombinant C-terminus of HSC70-interacting protein (CHIP) variants was performed in vitro using ubiquitin ligase activity assay, circular dichroism assay and native polyacrylamide gel electrophoresis. These studies revealed that dominantly and recessively inherited STUB1 variants showed similar biochemical defects, including impaired ubiquitin ligase activity and altered oligomerization properties of the CHIP. Our findings expand the molecular understanding of SCA48 but also mean that assumptions concerning unaffected carriers of recessive STUB1 variants in SCAR16 families must be re-evaluated. More investigations are needed to verify the disease status of SCAR16 heterozygotes and elucidate the molecular relationship between SCA48 and SCAR16 diseases.


Assuntos
Demência Frontotemporal/genética , Genes Dominantes , Genes Recessivos , Ataxias Espinocerebelares/genética , Ubiquitina-Proteína Ligases , Adulto , Idade de Início , Idoso , Família , Feminino , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Expressão Gênica , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Dobramento de Proteína , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia
2.
Fish Physiol Biochem ; 47(5): 1507-1525, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34338990

RESUMO

System b0,+ absorbs lysine, arginine, ornithine, and cystine, as well as some (large) neutral amino acids in the mammalian kidney and intestine. It is a heteromeric amino acid transporter made of the heavy subunit SLC3A1/rBAT and the light subunit SLC7A9/b0,+AT. Mutations in these two genes can cause cystinuria in mammals. To extend information on this transport system to teleost fish, we focused on the slc3a1 and slc7a9 genes by performing comparative and phylogenetic sequence analysis, investigating gene conservation during evolution (synteny), and defining early expression patterns during zebrafish (Danio rerio) development. Notably, we found that slc3a1 and slc7a9 are non-duplicated in the zebrafish genome. Whole-mount in situ hybridization detected co-localized expression of slc3a1 and slc7a9 in pronephric ducts at 24 h post-fertilization and in the proximal convoluted tubule at 3 days post-fertilization (dpf). Notably, both the genes showed co-localized expression in epithelial cells in the gut primordium at 3 dpf and in the intestine at 5 dpf (onset of exogenous feeding). Taken together, these results highlight the value of slc3a1 and slc7a9 as markers of zebrafish kidney and intestine development and show promise for establishing new zebrafish tools that can aid in the rapid screening(s) of substrates. Importantly, such studies will help clarify the complex interplay between the absorption of dibasic amino acids, cystine, and (large) neutral amino acids and the effect(s) of such nutrients on organismal growth.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos , Aminoácidos Neutros , Peixe-Zebra/fisiologia , Sistemas de Transporte de Aminoácidos Básicos/genética , Animais , Cistina/metabolismo , Glicoproteínas , Filogenia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Fish Physiol Biochem ; 46(6): 2281-2298, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32980952

RESUMO

Cationic amino acid transporter 1 (Cat-1 alias Slc7a1) is a Na+-independent carrier system involved in transport and absorption of the cationic amino acids lysine, arginine, histidine, and ornithine and has also been shown to be indispensable in a large variety of biological processes. Starting from isolated full-length zebrafish (Danio rerio) cDNA for slc7a1a, we performed comparative and phylogenetic sequence analysis, investigated the conservation of the gene during vertebrate evolution, and defined tissue expression during zebrafish development. Whole mount in situ hybridization first detected slc7a1a transcripts in somites, eyes, and brain at 14 h post-fertilization (hpf) with additional expression in the distal nephron at 24 hpf and in branchial arches at 3 days post-fertilization (dpf), with significant increase by 5 dpf. Taken together, the expression analysis of the zebrafish Cat-1 system gene slc7a1a suggests a functional role(s) during the early development of the central nervous system, muscle, gills, and kidney. Graphical abstract.


Assuntos
Transportador 1 de Aminoácidos Catiônicos/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/metabolismo , Região Branquial/metabolismo , Transportador 1 de Aminoácidos Catiônicos/química , Embrião não Mamífero , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Néfrons/metabolismo , Filogenia , Análise de Sequência de DNA , Análise de Sequência de Proteína , Somitos/metabolismo , Proteínas de Peixe-Zebra/química
4.
Int J Mol Sci ; 18(4)2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28353644

RESUMO

The neurotoxicity of methylmercury (MeHg) is well characterised, and the ameliorating effects of selenium have been described. However, little is known about the molecular mechanisms behind this contaminant-nutrient interaction. We investigated the influence of selenium (as selenomethionine, SeMet) and MeHg on mercury accumulation and protein expression in the brain of adult zebrafish (Danio rerio). Fish were fed diets containing elevated levels of MeHg and/or SeMet in a 2 × 2 full factorial design for eight weeks. Mercury concentrations were highest in the brain tissue of MeHg-exposed fish compared to the controls, whereas lower levels of mercury were found in the brain of zebrafish fed both MeHg and SeMet compared with the fish fed MeHg alone. The expression levels of proteins associated with gap junction signalling, oxidative phosphorylation, and mitochondrial dysfunction were significantly (p < 0.05) altered in the brain of zebrafish after exposure to MeHg and SeMet alone or in combination. Analysis of upstream regulators indicated that these changes were linked to the mammalian target of rapamycin (mTOR) pathways, which were activated by MeHg and inhibited by SeMet, possibly through a reactive oxygen species mediated differential activation of RICTOR, the rapamycin-insensitive binding partner of mTOR.


Assuntos
Encéfalo/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Selenometionina/farmacologia , Poluentes da Água/toxicidade , Animais , Encéfalo/metabolismo , Junções Comunicantes/metabolismo , Compostos de Metilmercúrio/farmacocinética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo , Selenometionina/farmacocinética , Serina-Treonina Quinases TOR/metabolismo , Poluentes da Água/farmacocinética , Peixe-Zebra
5.
Front Mol Neurosci ; 14: 723912, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630034

RESUMO

The ubiquitin ligase CHIP (C-terminus of Hsc70-interacting protein) is encoded by STUB1 and promotes ubiquitination of misfolded and damaged proteins. CHIP deficiency has been linked to several diseases, and mutations in the human STUB1 gene are associated with recessive and dominant forms of spinocerebellar ataxias (SCAR16/SCA48). Here, we examine the effects of impaired CHIP ubiquitin ligase activity in zebrafish (Danio rerio). We characterized the zebrafish stub1 gene and Chip protein, and generated and characterized a zebrafish mutant causing truncation of the Chip functional U-box domain. Zebrafish stub1 has a high degree of conservation with mammalian orthologs and was detected in a wide range of tissues in adult stages, with highest expression in brain, eggs, and testes. In the brain, stub1 mRNA was predominantly detected in the cerebellum, including the Purkinje cell layer and granular layer. Recombinant wild-type zebrafish Chip showed ubiquitin ligase activity highly comparable to human CHIP, while the mutant Chip protein showed impaired ubiquitination of the Hsc70 substrate and Chip itself. In contrast to SCAR16/SCA48 patients, no gross cerebellar atrophy was evident in mutant fish, however, these fish displayed reduced numbers and sizes of Purkinje cell bodies and abnormal organization of Purkinje cell dendrites. Mutant fish also had decreased total 26S proteasome activity in the brain and showed behavioral changes. In conclusion, truncation of the Chip U-box domain leads to impaired ubiquitin ligase activity and behavioral and anatomical changes in zebrafish, illustrating the potential of zebrafish to study STUB1-mediated diseases.

6.
Diabetes ; 70(3): 680-695, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33408126

RESUMO

Elucidation of mechanisms that govern lipid storage, oxidative stress, and insulin resistance may lead to improved therapeutic options for type 2 diabetes and other obesity-related diseases. Here, we find that adipose expression of the small neutral amino acid transporter SLC7A10, also known as alanine-serine-cysteine transporter-1 (ASC-1), shows strong inverse correlates with visceral adiposity, insulin resistance, and adipocyte hypertrophy across multiple cohorts. Concordantly, loss of Slc7a10 function in zebrafish in vivo accelerates diet-induced body weight gain and adipocyte enlargement. Mechanistically, SLC7A10 inhibition in human and murine adipocytes decreases adipocyte serine uptake and total glutathione levels and promotes reactive oxygen species (ROS) generation. Conversely, SLC7A10 overexpression decreases ROS generation and increases mitochondrial respiratory capacity. RNA sequencing revealed consistent changes in gene expression between human adipocytes and zebrafish visceral adipose tissue following loss of SLC7A10, e.g., upregulation of SCD (lipid storage) and downregulation of CPT1A (lipid oxidation). Interestingly, ROS scavenger reduced lipid accumulation and attenuated the lipid-storing effect of SLC7A10 inhibition. These data uncover adipocyte SLC7A10 as a novel important regulator of adipocyte resilience to nutrient and oxidative stress, in part by enhancing glutathione levels and mitochondrial respiration, conducive to decreased ROS generation, lipid accumulation, adipocyte hypertrophy, insulin resistance, and type 2 diabetes.


Assuntos
Adipócitos/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Obesidade/metabolismo , Obesidade/fisiopatologia , Células 3T3-L1 , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Western Blotting , Diabetes Mellitus Tipo 2/metabolismo , Genótipo , Glutationa/metabolismo , Humanos , Resistência à Insulina/fisiologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de RNA , Peixe-Zebra
8.
Front Genet ; 10: 184, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906313

RESUMO

Endocrine-disrupting contaminants have been associated with aberrant changes in epigenetic pathways in animals. In this study, zebrafish embryos were exposed bisphenol A (BPA) to search for associations between behavior and epigenetic mechanisms in fish. For concentration-dependent responses, embryos were exposed to a range of BPA concentrations (0.1 nM to 30 µM). Embryos were analyzed for locomotor activity at 3-, 4-, and 5-days post fertilization (dpf) in response to changing light conditions. Based on concentration-dependent effects on behavior and gene expression, 10 µM BPA [from 24 to 96 hours post fertilization (hpf)] was used for a whole-genome bisulfite sequencing (WGBS) study searching for genome-wide impacts on DNA methylation. Over the examined concentration ranges, hyperactivity was demonstrated for exposures to 0.001 µM BPA in comparison to embryos exposed to lower or higher BPA concentrations. Transcriptional analysis showed significant effects at >0.01 µM BPA for two genes related to DNA methylation (dnmt1, cbs). BPA exposure did not significantly affect global DNA methylation, but 20,474 differentially methylated (DM) sites in 4,873 genes were identified by WGBS analysis. Most DM sites were identified within gene bodies. The genes with the most DM sites were all protocadherin 2 gamma subfamily genes, related to axon targeting, synaptic development and neuronal survival. KEGG pathways most significantly affected by BPA exposure were phosphatidylinositol signaling system, followed by VEGF and MAPK signaling pathways. This study shows that BPA can affect zebrafish embryo swimming activity at very low concentrations as well as affecting numerous methylated sites in genes which are overrepresented in functionally relevant metabolic pathways. In conclusion, altered methylation patterns of genes associated with nervous system development might lead to abnormal swimming activity.

9.
PeerJ ; 3: e1244, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26734501

RESUMO

Selenoprotein P (SEPP1) distributes selenium (Se) throughout the body via the circulatory system. For vertebrates, the Se content of SEPP1 varies from 7 to 18 Se atoms depending on the species, but the reason for this variation remains unclear. Herein we provide evidence that vertebrate SEPP1 Sec content correlates positively with Se requirements. As the Se content of full length SEPP1 is genetically determined, this presents a unique case where a nutrient requirement can be predicted based on genomic sequence information.

10.
Aquat Toxicol ; 158: 211-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25481787

RESUMO

Methylmercury (MeHg) is a toxicant of concern for aquatic food chains. In the present study, the assimilation and depuration of dietary MeHg and the influence of dietary selenium on MeHg toxicokinetics was characterised in zebrafish (Danio rerio). In a triplicate tank experimental design (n=3 tanks per treatment group), adult zebrafish were exposed to dietary MeHg (as methylmercury-cysteine) at 5 and 10 µg/g and with or without selenium (as selenomethionine) supplemented to the diets at a concentration of 5 µg/g for 8 weeks followed by a 4-week depuration period. Methylmercury accumulated in muscle, liver and brain of zebrafish; with higher mercury concentrations in liver and brain than in muscle following 8 weeks of exposure. In muscle, the mercury concentrations were 3.4±0.2 and 6.4±0.1 µg/g ww (n=3) in zebrafish fed the 5 and 10 µg Hg/g diets, respectively. During the depuration period, mercury concentrations were significantly reduced in muscle in both the 5 and 10 µg Hg/g diet groups with a greater reduction in the high dose group. After depuration, the mercury concentrations were 2.4±0.1 and 4.0±0.3 µg/g ww (n=3) for zebrafish fed the 5 and 10 µg Hg/g diets, respectively. Data also indicated that supplemented dietary selenium reduced accumulation of MeHg and enhanced the elimination of MeHg. Lower levels of mercury were found in muscle of zebrafish fed MeHg and SeMet compared with fish fed only MeHg after 8 weeks exposure; the mercury concentrations in muscle were 5.8±0.2 and 6.4±0.1 µg/g ww (n=3) for zebrafish fed the 10 µg Hg/g+5 µg Se/g diet and the 10 µg Hg/g diet, respectively. Furthermore, the elimination of MeHg from muscle during the 4-week depuration period was significantly greater in the fish fed the diet containing SeMet compared to a control diet; the mercury concentrations were 3.3±0.1 and 4.0±0.3 µg/g ww (n=3) for zebrafish fed the 5 µg Se/g and the control diets, respectively. In summary, dietary SeMet reduces the accumulation and enhances the elimination of dietary MeHg in muscle of zebrafish.


Assuntos
Cisteína/análogos & derivados , Dieta , Compostos de Metilmercúrio/metabolismo , Compostos de Metilmercúrio/toxicidade , Selenometionina/farmacologia , Peixe-Zebra/fisiologia , Animais , Cisteína/análise , Cisteína/metabolismo , Cisteína/toxicidade , Fígado/química , Mercúrio/análise , Compostos de Metilmercúrio/análise , Músculos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo
11.
Chemosphere ; 120: 199-205, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25062025

RESUMO

Selenium (Se) and its derivatives are known to have protective effects against mercury (Hg) toxicity in mammals. In this study we wanted to evaluate whether Se co-exposure affect the transcription of methylmercury (MeHg) toxicity-relevant genes in early life stages of fish. Juvenile Atlantic cod were exposed to regular feed (control), Se-spiked feed (3mg Se kg(-1)), MeHg-spiked feed (10mg Hg kg(-1)) or to Se- and MeHg-spiked feed (3mg Se kg(-1) and 10mg Hg kg(-1), respectively) for ten weeks. Liver tissue was harvested for transcriptional analysis when the fish were weighing 11.4 ± 3.2g. Accumulated levels of Hg in liver of the two groups of fish exposed to MeHg were 1.5mg Hg kg(-1) wet weight, or 44-fold higher than in the control group, while the Se concentrations differed with less than 2-fold between the fish groups. Selenium co-exposure had no effect on the accumulated levels of Hg in liver tissue; however, MeHg co-exposure reduced the accumulated level of Se. Dietary exposure to MeHg had no effect on fish growth. Interaction effects between Se and MeHg exposure were observed for the transcriptional levels of CAT, GPX1, GPX3, NFE2L2, UBA52, SEPP1 and DNMT1. Significant effects of MeHg exposure were seen for DNMT1 and PPARG, while effects of Se exposure were seen for GPX4B and SEPP1A, as well as for DNA methyltransferase activity. The transcriptional results suggest, by considering up-regulation as a proxy for negative impact and at the tested concentrations, a pro-oxidative effect of Se co-exposure with MeHg, rather than an antioxidative effect.


Assuntos
Proteínas de Peixes/genética , Gadus morhua/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Selênio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Proteínas de Peixes/metabolismo , Gadus morhua/genética , Gadus morhua/crescimento & desenvolvimento , Fígado/efeitos dos fármacos , Fígado/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-24878852

RESUMO

This study aimed to investigate whether dioxin (TCDD) and methylmercury (MeHg) pose a threat to offspring of fish exposed to elevated concentrations of these chemicals via epigenetic-based mechanisms. Adult female zebrafish were fed diets added either 20 µg/kg 2,3,7,8 TCDD or 10 mg/kg MeHg for 47 days, or 10 mg/kg 5-aza-2'-deoxycytidine (5-AZA), a hypomethylating agent, for 32 days, and bred with unexposed males in clean water to produce F1 and F2 offspring. Global DNA methylation, promoter CpG island methylation and target gene transcription in liver of adult females and in 3 days post fertilization (dpf) F1 and F2 embryos were determined with HPLC, a novel CpG island tiling array containing 54,933 different probes and RT-qPCR, respectively. The results showed that chemical treatment had no significant effect on global DNA methylation levels in F1 (MeHg and TCDD) and F2 (MeHg) embryos and only a limited number of genes were identified with altered methylation levels at their promoter regions. CYP1A1 transcription, an established marker of TCDD exposure, was elevated 27-fold in F1 embryos compared to the controls, matching the high levels of CYP1A1 expression observed in F0 TCDD-treated females. This suggests that maternal transfer of TCDD is a significant route of exposure for the F1 offspring. In conclusion, the selected doses of TCDD and MeHg, two chemicals often found in high concentrations in fish, appear to have only modest effects on DNA methylation in F1 (MeHg and TCDD) and F2 (MeHg) embryos of treated F0 females.


Assuntos
Metilação de DNA/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Dibenzodioxinas Policloradas/toxicidade , Peixe-Zebra/genética , Animais , Ilhas de CpG/efeitos dos fármacos , Ilhas de CpG/genética , Citocromo P-450 CYP1A1/genética , Metilação de DNA/genética , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Características da Família , Feminino , Fígado/efeitos dos fármacos , Masculino , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Poluentes Químicos da Água/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa