Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 604(7906): 486-490, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35444322

RESUMO

Marine heatwaves (MHWs)-periods of exceptionally warm ocean temperature lasting weeks to years-are now widely recognized for their capacity to disrupt marine ecosystems1-3. The substantial ecological and socioeconomic impacts of these extreme events present significant challenges to marine resource managers4-7, who would benefit from forewarning of MHWs to facilitate proactive decision-making8-11. However, despite extensive research into the physical drivers of MHWs11,12, there has been no comprehensive global assessment of our ability to predict these events. Here we use a large multimodel ensemble of global climate forecasts13,14 to develop and assess MHW forecasts that cover the world's oceans with lead times of up to a year. Using 30 years of retrospective forecasts, we show that the onset, intensity and duration of MHWs are often predictable, with skilful forecasts possible from 1 to 12 months in advance depending on region, season and the state of large-scale climate modes, such as the El Niño/Southern Oscillation. We discuss considerations for setting decision thresholds based on the probability that a MHW will occur, empowering stakeholders to take appropriate actions based on their risk profile. These results highlight the potential for operational MHW forecasts, analogous to forecasts of extreme weather phenomena, to promote climate resilience in global marine ecosystems.

2.
Nature ; 599(7883): 85-90, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34732868

RESUMO

Baleen whales influence their ecosystems through immense prey consumption and nutrient recycling1-3. It is difficult to accurately gauge the magnitude of their current or historic ecosystem role without measuring feeding rates and prey consumed. To date, prey consumption of the largest species has been estimated using metabolic models3-9 based on extrapolations that lack empirical validation. Here, we used tags deployed on seven baleen whale (Mysticeti) species (n = 321 tag deployments) in conjunction with acoustic measurements of prey density to calculate prey consumption at daily to annual scales from the Atlantic, Pacific, and Southern Oceans. Our results suggest that previous studies3-9 have underestimated baleen whale prey consumption by threefold or more in some ecosystems. In the Southern Ocean alone, we calculate that pre-whaling populations of mysticetes annually consumed 430 million tonnes of Antarctic krill (Euphausia superba), twice the current estimated total biomass of E. superba10, and more than twice the global catch of marine fisheries today11. Larger whale populations may have supported higher productivity in large marine regions through enhanced nutrient recycling: our findings suggest mysticetes recycled 1.2 × 104 tonnes iron yr-1 in the Southern Ocean before whaling compared to 1.2 × 103 tonnes iron yr-1 recycled by whales today. The recovery of baleen whales and their nutrient recycling services2,3,7 could augment productivity and restore ecosystem function lost during 20th century whaling12,13.


Assuntos
Ingestão de Alimentos , Comportamento Predatório , Baleias/fisiologia , Animais , Regiões Antárticas , Oceano Atlântico , Biomassa , Euphausiacea , Cadeia Alimentar , Ferro/metabolismo , Oceano Pacífico , Baleias/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35058364

RESUMO

While there have been recent improvements in reducing bycatch in many fisheries, bycatch remains a threat for numerous species around the globe. Static spatial and temporal closures are used in many places as a tool to reduce bycatch. However, their effectiveness in achieving this goal is uncertain, particularly for highly mobile species. We evaluated evidence for the effects of temporal, static, and dynamic area closures on the bycatch and target catch of 15 fisheries around the world. Assuming perfect knowledge of where the catch and bycatch occurs and a closure of 30% of the fishing area, we found that dynamic area closures could reduce bycatch by an average of 57% without sacrificing catch of target species, compared to 16% reductions in bycatch achievable by static closures. The degree of bycatch reduction achievable for a certain quantity of target catch was related to the correlation in space and time between target and bycatch species. If the correlation was high, it was harder to find an area to reduce bycatch without sacrificing catch of target species. If the goal of spatial closures is to reduce bycatch, our results suggest that dynamic management provides substantially better outcomes than classic static marine area closures. The use of dynamic ocean management might be difficult to implement and enforce in many regions. Nevertheless, dynamic approaches will be increasingly valuable as climate change drives species and fisheries into new habitats or extended ranges, altering species-fishery interactions and underscoring the need for more responsive and flexible regulatory mechanisms.


Assuntos
Pesqueiros , Conservação dos Recursos Naturais , Ecossistema , Oceanografia
4.
Proc Biol Sci ; 291(2017): 20232461, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38378145

RESUMO

In the marine environment, dynamic physical processes shape biological productivity and predator-prey interactions across multiple scales. Identifying pathways of physical-biological coupling is fundamental to understand the functioning of marine ecosystems yet it is challenging because the interactions are difficult to measure. We examined submesoscale (less than 100 km) surface current features using remote sensing techniques alongside ship-based surveys of krill and baleen whale distributions in the California Current System. We found that aggregative surface current features, represented by Lagrangian coherent structures (LCS) integrated over temporal scales between 2 and 10 days, were associated with increased (a) krill density (up to 2.6 times more dense), (b) baleen whale presence (up to 8.3 times more likely) and (c) subsurface seawater density (at depths up to 10 m). The link between physical oceanography, krill density and krill-predator distributions suggests that LCS are important features that drive the flux of energy and nutrients across trophic levels. Our results may help inform dynamic management strategies aimed at reducing large whales ship strikes and help assess the potential impacts of environmental change on this critical ecosystem.


Assuntos
Euphausiacea , Baleias , Animais , Ecossistema , Água do Mar
5.
Proc Biol Sci ; 290(1992): 20222326, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36750186

RESUMO

Forage fishes are key energy conduits that transfer primary and secondary productivity to higher trophic levels. As novel environmental conditions caused by climate change alter ecosystems and predator-prey dynamics, there is a critical need to understand how forage fish control bottom-up forcing of food web dynamics. In the northeast Pacific, northern anchovy (Engraulis mordax) is an important forage species with high interannual variability in population size that subsequently impacts the foraging and reproductive ecology of marine predators. Anchovy habitat suitability from a species distribution model (SDM) was assessed as an indicator of the diet, distribution and reproduction of four predator species. Across 22 years (1998-2019), this anchovy ecosystem indicator (AEI) was significantly positively correlated with diet composition of all species and the distribution of common murres (Uria aalge), Brandt's cormorants (Phalacrocorax penicillatus) and California sea lions (Zalophus californianus), but not rhinoceros auklets (Cerorhinca monocerata). The capacity for the AEI to explain variability in predator reproduction varied by species but was strongest with cormorants and sea lions. The AEI demonstrates the utility of forage SDMs in creating ecosystem indicators to guide ecosystem-based management.


Assuntos
Charadriiformes , Ecossistema , Animais , Cadeia Alimentar , Aves , Peixes , Reprodução
6.
Ecol Appl ; 33(6): e2893, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37285072

RESUMO

Species distribution models (SDMs) are becoming an important tool for marine conservation and management. Yet while there is an increasing diversity and volume of marine biodiversity data for training SDMs, little practical guidance is available on how to leverage distinct data types to build robust models. We explored the effect of different data types on the fit, performance and predictive ability of SDMs by comparing models trained with four data types for a heavily exploited pelagic fish, the blue shark (Prionace glauca), in the Northwest Atlantic: two fishery dependent (conventional mark-recapture tags, fisheries observer records) and two fishery independent (satellite-linked electronic tags, pop-up archival tags). We found that all four data types can result in robust models, but differences among spatial predictions highlighted the need to consider ecological realism in model selection and interpretation regardless of data type. Differences among models were primarily attributed to biases in how each data type, and the associated representation of absences, sampled the environment and summarized the resulting species distributions. Outputs from model ensembles and a model trained on all pooled data both proved effective for combining inferences across data types and provided more ecologically realistic predictions than individual models. Our results provide valuable guidance for practitioners developing SDMs. With increasing access to diverse data sources, future work should further develop truly integrative modeling approaches that can explicitly leverage the strengths of individual data types while statistically accounting for limitations, such as sampling biases.


Assuntos
Biodiversidade , Tubarões , Animais , Peixes , Pesqueiros , Previsões , Ecossistema
7.
Conserv Biol ; : e14201, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37855129

RESUMO

Conservation planning traditionally relies upon static reserves; however, there is increasing emphasis on dynamic management (DM) strategies that are flexible in space and time. Due to its novelty, DM lacks best practices to guide design and implementation. We assessed the effect of planning unit size in a DM tool designed to reduce entanglement of protected whales in vertical ropes of surface buoys attached to crab traps in the lucrative U.S. Dungeness crab (Metacarcinus magister) fishery. We conducted a retrospective analysis from 2009 to 2019 with modeled distributions of blue (Balaenoptera musculus) and humpback (Megaptera novaeangliae) whales and observed fisheries effort and revenue to evaluate the effect of 7 planning unit sizes on DM tool performance. We measured performance as avoided whale entanglement risk and protected fisheries revenue. Small planning units avoided up to $47 million of revenue loss and reduced entanglement risk by up to 25% compared to the large planning units currently in use by avoiding the incidental closure of areas with low biodiversity value and high fisheries revenue. However, large planning units were less affected by an unprecedented marine heat wave in 2014-2016 and by delays in information on the distributions of whales and the fishery. Our findings suggest that the choice of planning unit size will require decision-makers to navigate multiple socioecological considerations-rather than a one-size-fits-all approach-to separate wildlife from threats under a changing climate.


Selección del tamaño de la unidad de planeación en las estrategias dinámicas de manejo para reducir el conflicto humano-fauna Resumen La planeación de la conservación depende por tradición de las reservas estáticas; sin embargo, cada vez hay más énfasis en estrategias de manejo dinámico (MD) que son flexibles con el tiempo y el espacio. Ya que es novedoso, el MD carece de buenas prácticas que guíen el diseño y la implementación. Analizamos el efecto del tamaño de la unidad de planeación en una herramienta de MD diseñada para reducir el número de ballenas que se enredan en las cuerdas verticales de las boyas amarradas a las trampas para cangrejos de la pesquería lucrativa del cangrejo Dungeness (Metacarcinus magister) en los Estados Unidos. Realizamos un análisis retrospectivo de 2009 a 2019 con modelos de distribución de la ballena azul (Balaenoptera musculus) y la ballena jorobada (Megaptera novaeangliae) y observamos los esfuerzos y ganancias de la pesquería para evaluar el efecto del tamaño de siete unidades de planeación sobre el desempeño de una herramienta de MD. Medimos el desempeño como el riesgo de enredamiento evitado y los ingresos protegidos de la pesquería. Las unidades pequeñas de planeación evitaron hasta $47 millones de ingresos perdidos y redujeron el riesgo de enredamiento hasta en 25% en comparación con las unidades grandes que se usan actualmente al evitar el cierre indirecto de áreas con un valor bajo de biodiversidad e ingresos elevados para la pesquería. Sin embargo, las unidades grandes de planeación estuvieron menos afectadas por una ola de calor marino sin precedentes entre 2014 y 2016 y por los retrasos en la información sobre la distribución de las ballenas y la pesquería. Nuestros hallazgos sugieren que la selección del tamaño de la unidad de planeación requerirá que el órgano decisorio navegue múltiples consideraciones socio-ecológicas-en lugar de un enfoque de un-tamaño-para-todos-para separar a la fauna de las amenazas bajo el clima cambiante.

8.
J Environ Manage ; 345: 118636, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37574637

RESUMO

To effectively manage species and habitats at multiple scales, population and land managers require rapid information on wildlife use of managed areas and responses to landscape conditions and management actions. GPS tracking studies of wildlife are particularly informative to species ecology, habitat use, and conservation. Combining GPS data with administrative data and a diverse suite of remotely sensed, geo-referenced environmental (e.g., climatic) data, would more comprehensively inform how animals interact with and utilize habitats and ecosystems and our goal was to create a conceptual model for a system that would accomplish this - the 'Automated Interactive Monitoring System (AIMS) for Wildlife'. Our objective for this study was to develop a Customized Wildlife Report (CWR) - the first AIMS for Wildlife deliverable product. CWRs collate and summarize our 8-year GPS tracking dataset of ∼11 million locations from 1338 individual (16 species) avifauna and make actionable, real-time data on animal movements and trends in a specific area of interest available to managers and stakeholders for rapid application in day-to-day management. The CWR exemplar presented in this paper was developed to address needs identified by habitat managers of Sacramento National Wildlife Refuge and illustrates the highly specific, information offered and how it contributes to assessing the efficacy of conservation actions while allowing for near real-time adaptive management. The report can be easily customized for any of the thousands of wildlife refuges or regional areas of interest in the United States, emphasizing the broad application of an animal movement data stream. Utilizing diverse, extensive telemetry data streams through scientific collaboration can aid managers and conservation stakeholders with short and long-term research and conservation planning and help address a cadre of issues from local-scale habitat management to improving the understanding of landscape level impacts like drought, wildfire, and climate change on wildlife populations.


Assuntos
Animais Selvagens , Ecossistema , Animais , Estados Unidos , Ecologia , Modelos Teóricos , Telemetria , Conservação dos Recursos Naturais
9.
Angew Chem Int Ed Engl ; 62(36): e202305816, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37309074

RESUMO

An understanding of the CO2 adsorption mechanisms on small-pore zeolites is of practical importance in the development of more efficient adsorbents for the separation of CO2 from N2 or CH4 . Here we report that the CO2 isotherms at 25-75 °C on cesium-exchanged phillipsite zeolite with a Si/Al ratio of 2.5 (Cs-PHI-2.5) are characterized by a rectilinear step shape: limited uptake at low CO2 pressure (PCO2 ) is followed by highly cooperative uptake at a critical pressure, above which adsorption rapidly approaches capacity (2.0 mmol g-1 ). Structural analysis reveals that this isotherm behavior is attributed to the high concentration and large size of Cs+ ions in dehydrated Cs-PHI-2.5. This results in Cs+ cation crowding and subsequent dispersal at a critical loading of CO2 , which allows the PHI framework to relax to its wide pore form and enables its pores to fill with CO2 over a very narrow range of PCO2 . Such a highly cooperative phenomenon has not been observed for other zeolites.

10.
J Biol Chem ; 297(2): 100975, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34284061

RESUMO

Like most enveloped viruses, HIV must acquire a lipid membrane as it assembles and buds through the plasma membrane of infected cells to spread infection. Several sets of host cell machinery facilitate this process, including proteins of the endosomal sorting complexes required for transport pathway, which mediates the membrane fission reaction required to complete viral budding, as well as angiomotin (AMOT) and NEDD4L, which bind one another and promote virion membrane envelopment. AMOT and NEDD4L interact through the four NEDD4L WW domains and three different AMOT Pro-Pro-x (any amino acid)-Tyr (PPxY) motifs, but these interactions are not yet well defined. Here, we report that individual AMOT PPxY and NEDD4L WW domains interact with the following general affinity hierarchies: AMOT PPxY1>PPxY2>PPxY3 and NEDD4L WW3>WW2>WW1∼WW4. The unusually high-affinity of the AMOT PPxY1-NEDD4L WW3 interaction accounts for most of the AMOT-NEDD4L binding and is critical for stimulating HIV-1 release. Comparative structural, binding, and virological analyses reveal that complementary ionic and hydrophobic contacts on both sides of the WW-PPxY core interaction account for the unusually high affinity of the AMOT PPxY1-NEDD4L WW3 interaction. Taken together, our studies reveal how the first AMOT PPxY1 motif binds the third NEDD4L WW domain to stimulate HIV-1 viral envelopment and promote infectivity.


Assuntos
Angiomotinas/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Montagem de Vírus , Motivos de Aminoácidos , Linhagem Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Infecções por HIV/patologia , Infecções por HIV/transmissão , Infecções por HIV/virologia , HIV-1/isolamento & purificação , HIV-1/patogenicidade , Humanos , Domínios Proteicos
11.
Proc Biol Sci ; 289(1981): 20221180, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35975432

RESUMO

Marine predators face the challenge of reliably finding prey that is patchily distributed in space and time. Predators make movement decisions at multiple spatial and temporal scales, yet we have a limited understanding of how habitat selection at multiple scales translates into foraging performance. In the ocean, there is mounting evidence that submesoscale (i.e. less than 100 km) processes drive the formation of dense prey patches that should hypothetically provide feeding hot spots and increase predator foraging success. Here, we integrated environmental remote-sensing with high-resolution animal-borne biologging data to evaluate submesoscale surface current features in relation to the habitat selection and foraging performance of blue whales in the California Current System. Our study revealed a consistent functional relationship in which blue whales disproportionately foraged within dynamic aggregative submesoscale features at both the regional and feeding site scales across seasons, regions and years. Moreover, we found that blue whale feeding rates increased in areas with stronger aggregative features, suggesting that these features indicate areas of higher prey density. The use of fine-scale, dynamic features by foraging blue whales underscores the need to take these features into account when designating critical habitat and may help inform strategies to mitigate the impacts of human activities for the species.


Assuntos
Balaenoptera , Animais , Ecossistema , Comportamento Alimentar , Humanos , Movimento , Oceanos e Mares , Estações do Ano
12.
Proc Biol Sci ; 289(1982): 20221312, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36069010

RESUMO

Environmental contamination is widespread and can negatively impact wildlife health. Some contaminants, including heavy metals, have immunosuppressive effects, but prior studies have rarely measured contamination and disease simultaneously, which limits our understanding of how contaminants and pathogens interact to influence wildlife health. Here, we measured mercury concentrations, influenza infection, influenza antibodies and body condition in 749 individuals from 11 species of wild ducks overwintering in California. We found that the odds of prior influenza infection increased more than fivefold across the observed range of blood mercury concentrations, while accounting for species, age, sex and date. Influenza infection prevalence was also higher in species with higher average mercury concentrations. We detected no relationship between influenza infection and body fat content. This positive relationship between influenza prevalence and mercury concentrations in migratory waterfowl suggests that immunotoxic effects of mercury contamination could promote the spread of avian influenza along migratory flyways, especially if influenza has minimal effects on bird health and mobility. More generally, these results show that the effects of environmental contamination could extend beyond the geographical area of contamination itself by altering the prevalence of infectious diseases in highly mobile hosts.


Assuntos
Influenza Aviária , Influenza Humana , Mercúrio , Animais , Animais Selvagens , Anticorpos Antivirais , Aves , Patos , Humanos , Influenza Aviária/epidemiologia , Mercúrio/toxicidade , Prevalência
13.
Glob Chang Biol ; 28(6): 1990-2005, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35023247

RESUMO

Given climate change threats to ecosystems, it is critical to understand the responses of species to warming. This is especially important in the case of apex predators since they exhibit relatively high extinction risk, and changes to their distribution could impact predator-prey interactions that can initiate trophic cascades. Here we used a combined analysis of animal tracking, remotely sensed environmental data, habitat modeling, and capture data to evaluate the effects of climate variability and change on the distributional range and migratory phenology of an ectothermic apex predator, the tiger shark (Galeocerdo cuvier). Tiger sharks satellite tracked in the western North Atlantic between 2010 and 2019 revealed significant annual variability in the geographic extent and timing of their migrations to northern latitudes from ocean warming. Specifically, tiger shark migrations have extended farther poleward and arrival times to northern latitudes have occurred earlier in the year during periods with anomalously high sea-surface temperatures. A complementary analysis of nearly 40 years of tiger shark captures in the region revealed decadal-scale changes in the distribution and timing of shark captures in parallel with long-term ocean warming. Specifically, areas of highest catch densities have progressively increased poleward and catches have occurred earlier in the year off the North American shelf. During periods of anomalously high sea-surface temperatures, movements of tracked sharks shifted beyond spatial management zones that had been affording them protection from commercial fishing and bycatch. Taken together, these study results have implications for fisheries management, human-wildlife conflict, and ecosystem functioning.


Assuntos
Ecossistema , Tubarões , Animais , Mudança Climática , Pesqueiros , Humanos , Oceanos e Mares , Tubarões/fisiologia
14.
Glob Chang Biol ; 28(22): 6586-6601, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35978484

RESUMO

Projecting the future distributions of commercially and ecologically important species has become a critical approach for ecosystem managers to strategically anticipate change, but large uncertainties in projections limit climate adaptation planning. Although distribution projections are primarily used to understand the scope of potential change-rather than accurately predict specific outcomes-it is nonetheless essential to understand where and why projections can give implausible results and to identify which processes contribute to uncertainty. Here, we use a series of simulated species distributions, an ensemble of 252 species distribution models, and an ensemble of three regional ocean climate projections, to isolate the influences of uncertainty from earth system model spread and from ecological modeling. The simulations encompass marine species with different functional traits and ecological preferences to more broadly address resource manager and fishery stakeholder needs, and provide a simulated true state with which to evaluate projections. We present our results relative to the degree of environmental extrapolation from historical conditions, which helps facilitate interpretation by ecological modelers working in diverse systems. We found uncertainty associated with species distribution models can exceed uncertainty generated from diverging earth system models (up to 70% of total uncertainty by 2100), and that this result was consistent across species traits. Species distribution model uncertainty increased through time and was primarily related to the degree to which models extrapolated into novel environmental conditions but moderated by how well models captured the underlying dynamics driving species distributions. The predictive power of simulated species distribution models remained relatively high in the first 30 years of projections, in alignment with the time period in which stakeholders make strategic decisions based on climate information. By understanding sources of uncertainty, and how they change at different forecast horizons, we provide recommendations for projecting species distribution models under global climate change.


Assuntos
Mudança Climática , Ecossistema , Pesqueiros , Previsões , Incerteza
15.
Chemistry ; 28(56): e202201689, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-35821198

RESUMO

High silica zeolite ZK-5 (framework Si/Al=4.8) has been prepared by interzeolite conversion from ultrastable zeolite Y via a co-templating route using alkali metal cations and nitrate anions but without organic structure directing agents. The mechanism, which involves zeolite framework - alkali metal cation - nitrate anion ordering, has been established by a combination of chemical and thermal analyses, Raman spectroscopy, computational modelling, and X-ray powder diffraction. Ammonium exchange gives ZK-5 with occluded ammonium nitrate and subsequent heating gives microporous zeolite ZK-5.

16.
Proc Natl Acad Sci U S A ; 116(12): 5582-5587, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30804188

RESUMO

In terrestrial systems, the green wave hypothesis posits that migrating animals can enhance foraging opportunities by tracking phenological variation in high-quality forage across space (i.e., "resource waves"). To track resource waves, animals may rely on proximate cues and/or memory of long-term average phenologies. Although there is growing evidence of resource tracking in terrestrial migrants, such drivers remain unevaluated in migratory marine megafauna. Here we present a test of the green wave hypothesis in a marine system. We compare 10 years of blue whale movement data with the timing of the spring phytoplankton bloom resulting in increased prey availability in the California Current Ecosystem, allowing us to investigate resource tracking both contemporaneously (response to proximate cues) and based on climatological conditions (memory) during migrations. Blue whales closely tracked the long-term average phenology of the spring bloom, but did not track contemporaneous green-up. In addition, blue whale foraging locations were characterized by low long-term habitat variability and high long-term productivity compared with contemporaneous measurements. Results indicate that memory of long-term average conditions may have a previously underappreciated role in driving migratory movements of long-lived species in marine systems, and suggest that these animals may struggle to respond to rapid deviations from historical mean environmental conditions. Results further highlight that an ecological theory of migration is conserved across marine and terrestrial systems. Understanding the drivers of animal migration is critical for assessing how environmental changes will affect highly mobile fauna at a global scale.


Assuntos
Migração Animal/fisiologia , Balaenoptera/fisiologia , Animais , Balaenoptera/psicologia , California , Ecossistema , Memória/fisiologia , Movimento
17.
Proc Biol Sci ; 288(1964): 20211607, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34847764

RESUMO

Despite the increasing frequency and magnitude of extreme climate events, little is known about how their impacts flow through social and ecological systems or whether management actions can dampen deleterious effects. We examined how the record 2014-2016 Northeast Pacific marine heatwave influenced trade-offs in managing conflict between conservation goals and human activities using a case study on large whale entanglements in the U.S. west coast's most lucrative fishery (the Dungeness crab fishery). We showed that this extreme climate event diminished the power of multiple management strategies to resolve trade-offs between entanglement risk and fishery revenue, transforming near win-win to clear win-lose outcomes (for whales and fishers, respectively). While some actions were more cost-effective than others, there was no silver-bullet strategy to reduce the severity of these trade-offs. Our study highlights how extreme climate events can exacerbate human-wildlife conflict, and emphasizes the need for innovative management and policy interventions that provide ecologically and socially sustainable solutions in an era of rapid environmental change.


Assuntos
Animais Selvagens , Pesqueiros , Animais , Clima , Conservação dos Recursos Naturais , Ecossistema , Humanos , Baleias
18.
Glob Chang Biol ; 27(10): 2188-2199, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33561314

RESUMO

Plastic pollution has pervaded almost every facet of the biosphere, yet we lack an understanding of consumption risk by marine species at the global scale. To address this, we compile data from research documenting plastic debris ingestion by marine fish, totaling 171,774 individuals of 555 species. Overall, 386 marine fish species have ingested plastic debris including 210 species of commercial importance. However, 148 species studied had no records of plastic consumption, suggesting that while this evolutionary trap is widespread, it is not yet universal. Across all studies that accounted for microplastics, the incidence rate of plastic ingested by fish was 26%. Over the last decade this incidence has doubled, increasing by 2.4 ± 0.4% per year. This is driven both by increasing detection of smaller sized particles as a result of improved methodologies, as well as an increase in fish consuming plastic. Further, we investigated the role of geographic, ecological, and behavioral factors in the ingestion of plastic across species. These analyses revealed that the abundance of plastic in surface waters was positively correlated to plastic ingestion. Demersal species are more likely to ingest plastic in shallow waters; in contrast, pelagic species were most likely to consume plastic below the mixed layer. Mobile predatory species had the highest likelihood to ingest plastic; similarly, we found a positive relationship between trophic level and plastic ingestion. We also find evidence that surface ingestion-deep sea egestion of microplastics by mesopelagic myctophids is likely a key mechanism for the export of microplastics from the surface ocean to the seafloor, a sink for marine debris. These results elucidate the role of ecology and biogeography underlying plastic ingestion by marine fish and point toward species and regions in urgent need of study.


Assuntos
Plásticos , Poluentes Químicos da Água , Animais , Ingestão de Alimentos , Monitoramento Ambiental , Peixes , Humanos , Poluentes Químicos da Água/análise
19.
Ecol Appl ; 31(6): e02358, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33870598

RESUMO

Earth-observing satellites are a major research tool for spatially explicit ecosystem nowcasting and forecasting. However, there are practical challenges when integrating satellite data into usable real-time products for stakeholders. The need of forecast immediacy and accuracy means that forecast systems must account for missing data and data latency while delivering a timely, accurate, and actionable product to stakeholders. This is especially true for species that have legal protection. Acipenser oxyrinchus oxyrinchus (Atlantic sturgeon) were listed under the United States Endangered Species Act in 2012, which triggered immediate management action to foster population recovery and increase conservation measures. Building upon an existing research occurrence model, we developed an Atlantic sturgeon forecast system in the Delaware Bay, USA. To overcome missing satellite data due to clouds and produce a 3-d forecast of ocean conditions, we implemented data interpolating empirical orthogonal functions (DINEOF) on daily observed satellite data. We applied the Atlantic sturgeon research model to the DINEOF output and found that it correctly predicted Atlantic sturgeon telemetry occurrences over 90% of the time within a 3-d forecast. A similar framework has been utilized to forecast harmful algal blooms, but to our knowledge, this is the first time a species distribution model has been applied to DINEOF gap-filled data to produce a forecast product for fishes. To implement this product into an applied management setting, we worked with state and federal organizations to develop real-time and forecasted risk maps in the Delaware River Estuary for both state-level managers and commercial fishers. An automated system creates and distributes these risk maps to subscribers' mobile devices, highlighting areas that should be avoided to reduce interactions. Additionally, an interactive web interface allows users to plot historic, current, future, and climatological risk maps as well as the underlying model output of Atlantic sturgeon occurrence. The mobile system and web tool provide both stakeholders and managers real-time access to estimated occurrences of Atlantic sturgeon, enabling conservation planning and informing fisher behavior to reduce interactions with this endangered species while minimizing impacts to fisheries and other projects.


Assuntos
Ecossistema , Espécies em Perigo de Extinção , Imagens de Satélites , Animais , Baías , Delaware , Pesqueiros , Peixes , Rios , Telemetria
20.
Anaesthesia ; 76(6): 832-836, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33150618

RESUMO

Interventions from randomised controlled trials can only be replicated if they are reported in sufficient detail. The results of trials can only be confidently interpreted if the delivery of the intervention was systematic and the protocol adhered to. We systematically reviewed trials of anaesthetic interventions published in 12 journals from January 2016 to September 2019. We assessed the detail with which interventions were reported, using the Consolidated Standards of Reporting Trials statement for non-pharmacological treatments. We analysed 162 interventions reported by 78 trials in 18,675 participants. Detail sufficiently precise to replicate the intervention was reported for 111 (69%) interventions. Intervention standardisation was reported for 135 (83%) out of the 162 interventions, and protocol adherence was reported for 20 (12%) interventions. Sixty (77%) out of the 78 trials reported the administrative context in which interventions were delivered and 36 (46%) trials detailed the expertise of the practitioners. We conclude that bespoke reporting tools should be developed for anaesthetic interventions and interventions in other areas such as critical care.


Assuntos
Anestesia/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto/normas , Relatório de Pesquisa/normas , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa