Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

País como assunto
Tipo de documento
Intervalo de ano de publicação
2.
Food Res Int ; 188: 114517, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823849

RESUMO

Slowing the rate of carbohydrate digestion leads to low postprandial glucose and insulin responses, which are associated with reduced risk of type 2 diabetes. There is increasing evidence that food structure plays a crucial role in influencing the bioaccessibility and digestion kinetics of macronutrients. The aims of this study were to compare the effects of two hummus meals, with different degrees of cell wall integrity, on postprandial metabolic responses in relation to the microstructural and rheological characteristics of the meals. A randomised crossover trial in 15 healthy participants was designed to compare the acute effect of 27 g of starch, provided as hummus made from either intact chickpea cells (ICC) or ruptured chickpea cells (RCC), on postprandial metabolic responses. In vitro starch digestibility, microstructural and rheological experiments were also conducted to evaluate differences between the two chickpea hummus meals. Blood insulin and GIP concentrations were significantly lower (P < 0.02, P < 0.03) after the consumption of the ICC meal than the meal containing RCC. In vitro starch digestion for 90 min was slower in ICC than in RCC. Microscopic examination of hummus samples digested in vitro for 90 min revealed more intact chickpea cells in ICC compared to the RCC sample. Rheological experiments showed that fracture for ICC hummus samples occurred at smaller strains compared to RCC samples. However, the storage modulus for ICC was higher than RCC, which may be explained by the presence of intact cells in ICC. Food structure can affect the rate and extent of starch bioaccessibility and digestion and may explain the difference in the time course of metabolic responses between meals. The rheological properties were measured on the two types of meals before ingestion, showing significant differences that may point to different breakdown mechanisms during subsequent digestion. This trial was registered at clinicaltrial.gov as NCT03424187.


Assuntos
Glicemia , Cicer , Estudos Cross-Over , Digestão , Insulina , Período Pós-Prandial , Reologia , Humanos , Cicer/química , Período Pós-Prandial/fisiologia , Insulina/sangue , Insulina/metabolismo , Glicemia/metabolismo , Adulto , Masculino , Feminino , Adulto Jovem , Amido/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Polipeptídeo Inibidor Gástrico/sangue , Voluntários Saudáveis , Cinética
3.
Sci Data ; 11(1): 830, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080308

RESUMO

Proactively identifying where land conversion might occur is critical to targeted and effective conservation planning. Previous efforts to map future habitat loss have largely focused on forested systems and have been limited in their consideration of drivers of loss. We developed a 1-km resolution, global map of land conversion pressure from multiple drivers, referred to as the conversion pressure index (CPI). The CPI combines past rates of anthropogenic change, as measured by temporal human modification maps, with suitability maps for potential future expansion by large-scale development. The CPI thus offers a new way to measure a cumulative gradient of anthropogenic pressure as opposed to categorical land cover change. We find that nearly 23% of land across 200 countries have relatively high conversion pressure, potentially impacting over 460 million ha of intact natural lands. We illustrate how this information can be used to identify areas for proactive conservation to avoid future loss and ensure that national commitments under the Kunming-Montreal Global Biodiversity and Paris Agreement Climate Frameworks are upheld.


Assuntos
Conservação dos Recursos Naturais , Humanos , Ecossistema , Biodiversidade
4.
Nat Commun ; 15(1): 2275, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531896

RESUMO

Restoring tree cover changes albedo, which is the fraction of sunlight reflected from the Earth's surface. In most locations, these changes in albedo offset or even negate the carbon removal benefits with the latter leading to global warming. Previous efforts to quantify the global climate mitigation benefit of restoring tree cover have not accounted robustly for albedo given a lack of spatially explicit data. Here we produce maps that show that carbon-only estimates may be up to 81% too high. While dryland and boreal settings have especially severe albedo offsets, it is possible to find places that provide net-positive climate mitigation benefits in all biomes. We further find that on-the-ground projects are concentrated in these more climate-positive locations, but that the majority still face at least a 20% albedo offset. Thus, strategically deploying restoration of tree cover for maximum climate benefit requires accounting for albedo change and we provide the tools to do so.

5.
Nat Commun ; 15(1): 547, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263156

RESUMO

Natural climate solutions can mitigate climate change in the near-term, during a climate-critical window. Yet, persistent misunderstandings about what constitutes a natural climate solution generate unnecessary confusion and controversy, thereby delaying critical mitigation action. Based on a review of scientific literature and best practices, we distill five foundational principles of natural climate solutions (nature-based, sustainable, climate-additional, measurable, and equitable) and fifteen operational principles for practical implementation. By adhering to these principles, practitioners can activate effective and durable natural climate solutions, enabling the rapid and wide-scale adoption necessary to meaningfully contribute to climate change mitigation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa