Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39026883

RESUMO

Mounting evidence supports a critical role for central nervous system (CNS) glial cells in neuroinflammation and neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's Disease (PD), Multiple Sclerosis (MS), as well as neurovascular ischemic stroke. Previously, we found that loss of the PD-associated gene leucine-rich repeat kinase 2 (Lrrk2) in macrophages, peripheral innate immune cells, induced mitochondrial stress and elevated basal expression of type I interferon (IFN) stimulated genes (ISGs) due to chronic mitochondrial DNA engagement with the cGAS/STING DNA sensing pathway. Here, we report that loss of LRRK2 results in a paradoxical response in microglial cells, a CNS-specific macrophage population. In primary murine microglia and microglial cell lines, loss of Lrrk2 reduces tonic IFN signaling leading to a reduction in ISG expression. Consistent with reduced type I IFN, mitochondria from Lrrk2 KO microglia are protected from stress and have elevated metabolism. These protective phenotypes involve upregulation of NRF2, an important transcription factor in the response to oxidative stress and are restricted by LRRK2 kinase activity. Collectively, these findings illustrate a dichotomous role for LRRK2 within different immune cell populations and give insight into the fundamental differences between immune regulation in the CNS and the periphery.

2.
Curr Opin Immunol ; 84: 102366, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37453340

RESUMO

In addition to housing the major energy-producing pathways in cells, mitochondria are active players in innate immune responses. One critical way mitochondria fulfill this role is by releasing damage-associated molecular patterns (mtDAMPs) that are recognized by innate sensors to activate pathways including, but not limited to, cytokine expression, selective autophagy, and cell death. Mitochondrial reactive oxygen species (mtROS) is a multifunctional mtDAMP linked to pro- and antimicrobial immune outcomes. Formed as a by-product of energy generation, mtROS links mitochondrial metabolism with downstream innate immune responses. As a result, altered cellular metabolism can change mtROS levels and impact downstream antimicrobial responses in a variety of ways. MtROS has emerged as a particularly important mediator of pathogenesis during infection with Mycobacterium tuberculosis (Mtb), an intracellular bacterial pathogen that continues to pose a significant threat to global public health. Here, we will summarize how Mtb modulates mtROS levels in infected macrophages and how mtROS dictates Mtb infection outcomes by controlling inflammation, lipid peroxidation, and cell death. We propose that mtROS may serve as a biomarker to predict tuberculosis patient outcomes and/or a target for host-directed therapeutics.


Assuntos
Anti-Infecciosos , Mycobacterium tuberculosis , Tuberculose , Humanos , Espécies Reativas de Oxigênio , Imunidade Inata , Mitocôndrias/metabolismo
3.
Trends Cell Biol ; 33(9): 773-787, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37062616

RESUMO

Since their discovery, members of the gasdermin (GSDM) family of proteins have been firmly established as executors of pyroptosis, with the N-terminal fragment of most GSDMs capable of forming pores in the plasma membrane. More recent findings suggest that some GSDMs can drive additional cell death pathways, such as apoptosis and necroptosis, through mechanisms independent of plasma membrane perforation. There is also emerging evidence that by associating with cellular compartments such as mitochondria, peroxisomes, endosomes, and the nucleus, GSDMs regulate cell death-independent aspects of cellular homeostasis. Here, we review the diversity of GSDM function across several cell types and explore how various cellular stresses can promote relocalization - and thus refunctionalization - of GSDMs.


Assuntos
Gasderminas , Proteínas de Neoplasias , Humanos , Proteínas de Neoplasias/metabolismo , Apoptose , Piroptose/fisiologia , Homeostase , Inflamassomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa