Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lasers Surg Med ; 56(2): 206-217, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38073098

RESUMO

OBJECTIVES: Raman spectroscopy as a diagnostic tool for biofluid applications is limited by low inelastic scattering contributions compared to the fluorescence background from biomolecules. Surface-enhanced Raman spectroscopy (SERS) can increase Raman scattering signals, thereby offering the potential to reduce imaging times. We aimed to evaluate the enhancement related to the plasmonic effect and quantify the improvements in terms of spectral quality associated with SERS measurements in human saliva. METHODS: Dried human saliva was characterized using spontaneous Raman spectroscopy and SERS. A fabrication protocol was implemented leading to the production of silver (Ag) nanopillar substrates by glancing angle deposition. Two different imaging systems were used to interrogate saliva from 161 healthy donors: a custom single-point macroscopic system and a Raman micro-spectroscopy instrument. Quantitative metrics were established to compare spontaneous RS and SERS measurements: the Raman spectroscopy quality factor (QF), the photonic count rate (PR), the signal-to-background ratio (SBR). RESULTS: SERS measurements acquired with an excitation energy four times smaller than with spontaneous RS resulted in improved QF, PR values an order of magnitude larger and a SBR twice as large. The SERS enhancement reached 100×, depending on which Raman bands were considered. CONCLUSIONS: Single-point measurement of dried saliva with silver nanopillars substrates led to reproducible SERS measurements, paving the way to real-time tools of diagnosis in human biofluids.


Assuntos
Prata , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Prata/análise , Prata/química , Saliva/química
2.
Hepatology ; 74(1): 428-443, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33420756

RESUMO

BACKGROUND AND AIMS: Liver graft quality is evaluated by visual inspection prior to transplantation, a process highly dependent on the surgeon's experience. We present an objective, noninvasive, quantitative way of assessing liver quality in real time using Raman spectroscopy, a laser-based tool for analyzing biomolecular composition. APPROACH AND RESULTS: A porcine model of donation after circulatory death (DCD) with normothermic regional perfusion (NRP) allowed assessment of liver quality premortem, during warm ischemia (WI) and post-NRP. Ten percent of circulating blood volume was removed in half of experiments to simulate blood recovery for DCD heart removal. Left median lobe biopsies were obtained before circulatory arrest, after 45 minutes of WI, and after 2 hours of NRP and analyzed using spontaneous Raman spectroscopy, stimulated Raman spectroscopy (SRS), and staining. Measurements were also taken in situ from the porcine liver using a handheld Raman spectrometer at these time points from left median and right lateral lobes. Raman microspectroscopy detected congestion during WI by measurement of the intrinsic Raman signal of hemoglobin in red blood cells (RBCs), eliminating the need for exogenous labels. Critically, this microvascular damage was not observed during WI when 10% of circulating blood was removed before cardiac arrest. Two hours of NRP effectively cleared RBCs from congested livers. Intact RBCs were visualized rapidly at high resolution using SRS. Optical properties of ischemic livers were significantly different from preischemic and post-NRP livers as measured using a handheld Raman spectrometer. CONCLUSIONS: Raman spectroscopy is an effective tool for detecting microvascular damage which could assist the decision to use marginal livers for transplantation. Reducing the volume of circulating blood before circulatory arrest in DCD may help reduce microvascular damage.


Assuntos
Seleção do Doador/métodos , Parada Cardíaca/fisiopatologia , Isquemia/diagnóstico , Fígado/irrigação sanguínea , Análise Espectral Raman , Animais , Modelos Animais de Doenças , Estudos de Viabilidade , Humanos , Isquemia/fisiopatologia , Transplante de Fígado , Preservação de Órgãos , Perfusão , Suínos , Isquemia Quente
3.
Hepatology ; 74(4): 2310-2311, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33938014
4.
Anal Methods ; 15(32): 3955-3966, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37530390

RESUMO

The SARS-CoV-2 pandemic started more than 3 years ago, but the containment of the spread is still a challenge. Screening is imperative for informed decision making by government authorities to contain the spread of the virus locally. The access to screening tests is disproportional, due to the lack of access to reagents, equipment, finances or because of supply chain disruptions. Low and middle-income countries have especially suffered with the lack of these resources. Here, we propose a low cost and easily constructed biosensor device based on localized surface plasmon resonance, or LSPR, for the screening of SARS-CoV-2. The biosensor device, dubbed "sensor" for simplicity, was constructed in two modalities: (1) viral detection in saliva and (2) antibody against COVID in saliva. Saliva collected from 18 patients were tested in triplicates. Both sensors successfully classified all COVID positive patients (among hospitalized and non-hospitalized). From the COVID negative patients 7/8 patients were correctly classified. For both sensors, sensitivity was determined as 100% (95% CI 79.5-100) and specificity as 87.5% (95% CI 80.5-100). The reagents and equipment used for the construction and deployment of this sensor are ubiquitous and low-cost. This sensor technology can then add to the potential solution for challenges related to screening tests in underserved communities.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Saliva , Teste para COVID-19 , Anticorpos
5.
NPJ Regen Med ; 2: 12, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29302348

RESUMO

The field of regenerative medicine spans a wide area of the biomedical landscape-from single cell culture in laboratories to human whole-organ transplantation. To ensure that research is transferrable from bench to bedside, it is critical that we are able to assess regenerative processes in cells, tissues, organs and patients at a biochemical level. Regeneration relies on a large number of biological factors, which can be perturbed using conventional bioanalytical techniques. A versatile, non-invasive, non-destructive technique for biochemical analysis would be invaluable for the study of regeneration; and Raman spectroscopy is a potential solution. Raman spectroscopy is an analytical method by which chemical data are obtained through the inelastic scattering of light. Since its discovery in the 1920s, physicists and chemists have used Raman scattering to investigate the chemical composition of a vast range of both liquid and solid materials. However, only in the last two decades has this form of spectroscopy been employed in biomedical research. Particularly relevant to regenerative medicine are recent studies illustrating its ability to characterise and discriminate between healthy and disease states in cells, tissue biopsies and in patients. This review will briefly outline the principles behind Raman spectroscopy and its variants, describe key examples of its applications to biomedicine, and consider areas of regenerative medicine that would benefit from this non-invasive bioanalytical tool.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa