Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuron ; 53(5): 689-701, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17329209

RESUMO

A fundamental property of circadian rhythms is their ability to persist under constant conditions. In Drosophila, the ventral Lateral Neurons (LNvs) are the pacemaker neurons driving circadian behavior under constant darkness. Wild-type flies are arrhythmic under constant illumination, but flies defective for the circadian photoreceptor CRY remain rhythmic. We found that flies overexpressing the pacemaker gene per or the morgue gene are also behaviorally rhythmic under constant light. Unexpectedly, the LNvs do not drive these rhythms: they are molecularly arrhythmic, and PDF--the neuropeptide they secrete to synchronize behavioral rhythms under constant darkness--is dispensable for rhythmicity in constant light. Molecular circadian rhythms are only found in a group of Dorsal Neurons: the DN1s. Thus, a subset of Dorsal Neurons shares with the LNvs the ability to function as pacemakers for circadian behavior, and its importance is promoted by light.


Assuntos
Ritmo Circadiano/fisiologia , Proteínas de Drosophila/genética , Drosophila/fisiologia , Neurônios/fisiologia , Animais , Animais Geneticamente Modificados , Criptocromos , Escuridão , Proteínas de Drosophila/fisiologia , Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Iluminação , Neuropeptídeos/genética , Neuropeptídeos/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Proteínas Circadianas Period , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia
2.
PLoS Biol ; 6(1): e4, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18184036

RESUMO

The circadian clock plays a vital role in monarch butterfly (Danaus plexippus) migration by providing the timing component of time-compensated sun compass orientation, a process that is important for successful navigation. We therefore evaluated the monarch clockwork by focusing on the functions of a Drosophila-like cryptochrome (cry), designated cry1, and a vertebrate-like cry, designated cry2, that are both expressed in the butterfly and by placing these genes in the context of other relevant clock genes in vivo. We found that similar temporal patterns of clock gene expression and protein levels occur in the heads, as occur in DpN1 cells, of a monarch cell line that contains a light-driven clock. CRY1 mediates TIMELESS degradation by light in DpN1 cells, and a light-induced TIMELESS decrease occurs in putative clock cells in the pars lateralis (PL) in the brain. Moreover, monarch cry1 transgenes partially rescue both biochemical and behavioral light-input defects in cry(b) mutant Drosophila. CRY2 is the major transcriptional repressor of CLOCK:CYCLE-mediated transcription in DpN1 cells, and endogenous CRY2 potently inhibits transcription without involvement of PERIOD. CRY2 is co-localized with clock proteins in the PL, and there it translocates to the nucleus at the appropriate time for transcriptional repression. We also discovered CRY2-positive neural projections that oscillate in the central complex. The results define a novel, CRY-centric clock mechanism in the monarch in which CRY1 likely functions as a blue-light photoreceptor for entrainment, whereas CRY2 functions within the clockwork as the transcriptional repressor of a negative transcriptional feedback loop. Our data further suggest that CRY2 may have a dual role in the monarch butterfly's brain-as a core clock element and as an output that regulates circadian activity in the central complex, the likely site of the sun compass.


Assuntos
Borboletas/fisiologia , Ritmo Circadiano , Flavoproteínas/fisiologia , Luz Solar , Animais , Encéfalo/metabolismo , Linhagem Celular , Criptocromos , Drosophila/genética , Drosophila/fisiologia , Proteínas de Drosophila/genética , Proteínas do Olho/genética , Voo Animal , Dados de Sequência Molecular , Mutação , Células Fotorreceptoras de Invertebrados/fisiologia , Receptores Acoplados a Proteínas G/genética , Transgenes
3.
Science ; 304(5676): 1503-6, 2004 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-15178801

RESUMO

CRYPTOCHROME (CRY) is the primary circadian photoreceptor in Drosophila. We show that CRY binding to TIMELESS (TIM) is light-dependent in flies and irreversibly commits TIM to proteasomal degradation. In contrast, CRY degradation is dependent on continuous light exposure, indicating that the CRY-TIM interaction is transient. A novel cry mutation (cry(m)) reveals that CRY's photolyase homology domain is sufficient for light detection and phototransduction, whereas the carboxyl-terminal domain regulates CRY stability, CRY-TIM interaction, and circadian photosensitivity. This contrasts with the function of Arabidopsis CRY domains and demonstrates that insect and plant cryptochromes use different mechanisms.


Assuntos
Ritmo Circadiano , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Luz , Células Fotorreceptoras de Invertebrados/química , Células Fotorreceptoras de Invertebrados/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular , Criptocromos , Cisteína Endopeptidases/metabolismo , Escuridão , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas do Olho/genética , Feminino , Transdução de Sinal Luminoso , Masculino , Complexos Multienzimáticos/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Complexo de Endopeptidases do Proteassoma , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G
4.
Nature ; 420(6917): 816-20, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12447397

RESUMO

Circadian clocks drive rhythmic behaviour in animals and are regulated by transcriptional feedback loops. For example, the Drosophila proteins Clock (Clk) and Cycle (Cyc) activate transcription of period (per) and timeless (tim). Per and Tim then associate, translocate to the nucleus, and repress the activity of Clk and Cyc. However, post-translational modifications are also critical to proper timing. Per and Tim undergo rhythmic changes in phosphorylation, and evidence supports roles for two kinases in this process: Doubletime (Dbt) phosphorylates Per, whereas Shaggy (Sgg) phosphorylates Tim. Yet Sgg and Dbt often require a phosphoserine in their target site, and analysis of Per phosphorylation in dbt mutants suggests a role for other kinases. Here we show that the catalytic subunit of Drosophila casein kinase 2 (CK2alpha) is expressed predominantly in the cytoplasm of key circadian pacemaker neurons. CK2alpha mutant flies show lengthened circadian period, decreased CK2 activity, and delayed nuclear entry of Per. These effects are probably direct, as CK2alpha specifically phosphorylates Per in vitro. We propose that CK2 is an evolutionary link between the divergent circadian systems of animals, plants and fungi.


Assuntos
Relógios Biológicos , Ritmo Circadiano , Drosophila melanogaster/enzimologia , Drosophila melanogaster/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Western Blotting , Caseína Quinase II , Núcleo Celular/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas de Insetos/metabolismo , Atividade Motora , Mutação , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Fenótipo , Fosforilação , Proteínas Serina-Treonina Quinases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa