Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 57(39): 12626-12648, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-29663610

RESUMO

Once materials come into contact with a biological fluid containing proteins, proteins are generally-whether desired or not-attracted by the material's surface and adsorb onto it. The aim of this Review is to give an overview of the most commonly used characterization methods employed to gain a better understanding of the adsorption processes on either planar or curved surfaces. We continue to illustrate the benefit of combining different methods to different surface geometries of the material. The thus obtained insight ideally paves the way for engineering functional materials that interact with proteins in a predetermined manner.


Assuntos
Nanoestruturas/química , Proteínas/química , Portadores de Fármacos/química , Ligação Proteica , Coroa de Proteína/química , Dobramento de Proteína , Proteínas/metabolismo , Propriedades de Superfície , Nanomedicina Teranóstica
2.
Phys Rev Lett ; 116(9): 096101, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26991185

RESUMO

Superliquid repellency can be achieved by nano- and microstructuring surfaces in such a way that protrusions entrap air underneath the liquid. It is still not known how the three-phase contact line advances on such structured surfaces. In contrast to a smooth surface, where the contact line can advance continuously, on a superliquid-repellent surface, the contact line has to overcome an air gap between protrusions. Here, we apply laser scanning confocal microscopy to get the first microscopic videos of water drops advancing on a superhydrophobic array of micropillars. In contrast to common belief, the liquid surface gradually bends down until it touches the top face of the next micropillars. The apparent advancing contact angle is 180°. On the receding side, pinning to the top faces of the micropillars determines the apparent receding contact angle. Based on these observations, we propose that the apparent receding contact angle should be used for characterizing superliquid-repellent surfaces rather than the apparent advancing contact angle and hysteresis.

3.
Langmuir ; 31(26): 7317-27, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26065326

RESUMO

Superhydrophobic surfaces are usually characterized by a high apparent contact angle of water drops in air. Here we analyze the inverse situation: Rather than focusing on water repellency in air, we measure the attractive interaction of air bubbles and superhydrophobic surfaces in water. Forces were measured between microbubbles with radii R of 40-90 µm attached to an atomic force microscope cantilever and submerged superhydrophobic surfaces. In addition, forces between macroscopic bubbles (R = 1.2 mm) at the end of capillaries and superhydrophobic surfaces were measured. As superhydrophobic surfaces we applied soot-templated surfaces, nanofilament surfaces, micropillar arrays with flat top faces, and decorated micropillars. Depending on the specific structure of the superhydrophobic surfaces and the presence and amount of entrapped air, different interactions were observed. Soot-templated surfaces in the Cassie state showed superaerophilic behavior: Once the electrostatic double-layer force and a hydrodynamic repulsion were overcome, bubbles jumped onto the surface and fully merged with the entrapped air. On nanofilaments and micropillar arrays we observed in addition the formation of sessile bubbles with finite contact angles below 90° or the attachment of bubbles, which retained their spherical shape.

4.
Soft Matter ; 11(3): 506-15, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25415839

RESUMO

We demonstrate the fabrication of superhydrophobic surfaces consisting of micropillars with hydrophobic sidewalls and hydrophilic tops, referred to as Janus micropillars. Therefore we first coat a micropillar array with a mono- or bilayer of polymeric particles, and merge the particles together to shield the top faces while hydrophobizing the walls. After removing the polymer film, the top faces of the micropillar arrays can be selectively chemically functionalised with hydrophilic groups. The Janus arrays remain superhydrophobic even after functionalisation as verified by laser scanning confocal microscopy. The robustness of the superhydrophobic behaviour proves that the stability of the entrapped air cushion is determined by the forces acting at the rim of the micropillars. This insight should stimulate a new way of designing super liquid-repellent surfaces with tunable liquid adhesion. In particular, combining superhydrophobicity with the functionalisation of the top faces of the protrusions with hydrophilic groups may have exciting new applications, including high-density microarrays for high-throughput screening of bioactive molecules, cells, or enzymes or efficient water condensation. However, so far chemical attachment of hydrophilic molecules has been accompanied with complete wetting of the surface underneath. The fabrication of superhydrophobic surfaces where the top faces of the protrusions can be selectively chemically post-functionalised with hydrophilic molecules, while retaining their superhydrophobic properties, is both promising and challenging.


Assuntos
Nanotubos/química , Polímeros/química , Molhabilidade
5.
Soft Matter ; 11(38): 7617-26, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26291621

RESUMO

For a liquid droplet to slide down a solid planar surface, the surface usually has to be tilted above a critical angle of approximately 10°. By contrast, droplets of nearly any liquid "slip" on lubricant-infused textured surfaces - so termed slippery surfaces - when tilted by only a few degrees. The mechanism of how the lubricant alters the static and dynamic properties of the drop remains elusive because the drop-lubricant interface is hidden. Here, we image the shape of drops on lubricant-infused surfaces by laser scanning confocal microscopy. The contact angle of the drop-lubricant interface with the substrate exceeds 140°, although macroscopic contour images suggest angles as low as 60°. Confocal microscopy of moving drops reveals fundamentally different processes at the front and rear. Drops recede via discrete depinning events from surface protrusions at a defined receding contact angle, whereas the advancing contact angle is 180°. Drops slide easily, as the apparent contact angles with the substrate are high and the drop-lubricant interfacial tension is typically lower than the drop-air interfacial tension. Slippery surfaces resemble superhydrophobic surfaces with two main differences: drops on a slippery surface are surrounded by a wetting ridge of adjustable height and the air underneath the drop in the case of a superhydrophobic surface is replaced by lubricant in the case of a slippery surface.

6.
ACS Appl Mater Interfaces ; 12(19): 21192-21200, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32142252

RESUMO

Biofilm formation is most commonly combatted with antibiotics or biocides. However, proven toxicity and increasing resistance of bacteria increase the need for alternative strategies to prevent adhesion of bacteria to surfaces. Chemical modification of the surfaces by tethering of functional polymer brushes or films provides a route toward antifouling coatings. Furthermore, nanorough or superhydrophobic surfaces can delay biofilm formation. Here we show that submicrometer-sized roughness can outweigh surface chemistry by testing the adhesion of E. coli to surfaces of different topography and wettability over long exposure times (>7 days). Gram-negative and positive bacterial strains are tested for comparison. We show that an irregular three-dimensional layer of silicone nanofilaments suppresses bacterial adhesion, both in the presence and absence of an air cushion. We hypothesize that a 3D topography can delay biofilm formation (i) if bacteria do not fit into the pores of the coating or (ii) if bending of the bacteria is required to adhere. Thus, such a 3D topography offers an underestimated possibility to design antibacterial surfaces that do not require biocides or antibiotics.


Assuntos
Aderência Bacteriana/fisiologia , Incrustação Biológica/prevenção & controle , Escherichia coli/fisiologia , Vidro/química , Hidrocarbonetos Fluorados/química , Micrococcus luteus/fisiologia , Nanoestruturas/química , Pseudomonas fluorescens/fisiologia , Silicones/química , Molhabilidade
7.
ACS Appl Mater Interfaces ; 12(10): 12294-12304, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32040287

RESUMO

Collembola are ancient arthropods living in soil with extensive exposure to dirt, bacteria, and fungi. To protect from the harsh environmental conditions and to retain a layer of air for breathing when submerged in water, they have evolved a superhydrophobic, liquid-repelling cuticle surface. The nonfouling and self-cleaning properties of springtail cuticle make it an interesting target of biomimetic materials design. Recent research has mainly focused on the intricate microstructures at the cuticle surface. Here we study the role of the cuticle chemistry for the Collembola species Orchesella cincta (Collembola, Entomobryidae). O. cincta uses a relatively simple cuticle structure with primary granules arranged to function as plastrons. In contrast to the Collembolan cuticle featuring structures on multiple length scales that is functional irrespective of surface chemistry, we found that the O. cincta cuticle loses its hydrophobic properties after being rinsed with dichloromethane. Sum frequency generation spectroscopy and time-of-flight secondary ion mass spectrometry in combination with high-resolution mass spectrometry show that a nanometer thin triacylglycerol-containing wax layer at the cuticle surface is essential for maintaining the antiwetting properties. Removal of the wax layer exposes chitin, terpenes, and lipid layers in the cuticle. With respect to biomimetic applications, the results show that, combined with a carefully chosen surface chemistry, superhydrophobicity may be achieved using a relatively unsophisticated surface structure rather than a complex, re-entrant surface structure alone.


Assuntos
Escamas de Animais/química , Escamas de Animais/ultraestrutura , Interações Hidrofóbicas e Hidrofílicas , Insetos/química , Propriedades de Superfície , Escamas de Animais/diagnóstico por imagem , Animais , Proteínas de Insetos/química , Análise Espectral
8.
Acta Biomater ; 84: 317-327, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30529082

RESUMO

The design of drug delivery systems needs to consider biocompatibility and host body recognition for an adequate actuation. In this work, mesoporous silica nanoparticles (MSNs) surfaces were successfully modified with two silane molecules to provide mixed-charge brushes (-NH3⊕/-PO3⊝) and well evaluated in terms of surface properties, low-fouling capability and cell uptake in comparison to PEGylated MSNs. The modification process consists in the simultaneous direct-grafting of hydrolysable short chain amino (aminopropyl silanetriol, APST) and phosphonate-based (trihydroxy-silyl-propyl-methyl-phosphonate, THSPMP) silane molecules able to provide a pseudo-zwitterionic nature under physiological pH conditions. Results confirmed that both mixed-charge pseudo-zwitterionic MSNs (ZMSN) and PEG-MSN display a significant reduction of serum protein adhesion and macrophages uptake with respect to pristine MSNs. In the case of ZMSNs, this reduction is up to a 70-90% for protein adsorption and c.a. 60% for cellular uptake. This pseudo-zwitterionic modification has been focused on the aim of local treatment of bacterial infections through the synergistic effect between the inherent antimicrobial effect of mixed-charge system and the levofloxacin antibiotic release profile. These findings open promising future expectations for the effective treatment of bacterial infections through the use of mixed-charge pseudo-zwitterionic MSNs furtive to macrophages and with antimicrobial properties. STATEMENT OF SIGNIFICANCE: Herein a novel antimicrobial mixed-charge pseudo-zwitterionic MSNs based system with low-fouling and reduced cell uptake behavior has been developed. This chemical modification has been performed by the simultaneous grafting of short chain organosilanes, containing amino and phosphonate groups, respectively. This nanocarrier has been tested for local infection treatment through the synergy between the antimicrobial effect of mixed-charge brushes and the levofloxacin antibiotic release profile.


Assuntos
Antibacterianos , Levofloxacino , Macrófagos/metabolismo , Teste de Materiais , Nanopartículas , Dióxido de Silício , Animais , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Levofloxacino/química , Levofloxacino/farmacocinética , Levofloxacino/farmacologia , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Porosidade , Células RAW 264.7 , Silanos/química , Dióxido de Silício/química , Dióxido de Silício/farmacocinética , Dióxido de Silício/farmacologia
9.
Adv Mater ; 31(2): e1801324, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30417451

RESUMO

Fouling of thin tubes is a major problem, leading to various infections and associated morbidities, while cleaning is difficult or even impossible. Here, a generic method is introduced to activate and coat the inside of meter-long and at the same time thin (down to 1 mm) tubes with a super-liquid-repellent layer of nanofilaments, exhibiting even antibacterial properties. Activation is facilitated by pumping an oxidative Fenton solution through the tubes. Subsequent pumping of a silane solution renders the surface of the tubes super-liquid-repellent. The wide applicability of the method is demonstrated by coating stiff and flexible tubes made of polymers, inorganic/organic hybrids, metals, and ceramics. Coated medical catheters show excellent antibacterial properties. Notably, the nanofilaments retain their antibacterial properties even in the superhydrophilic state. These findings open new avenues toward the design of biocide-free, antibacterial tubings and catheters.


Assuntos
Antibacterianos , Incrustação Biológica/prevenção & controle , Catéteres , Nanoestruturas , Antibacterianos/síntese química , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Desenho de Equipamento , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Hidrocarbonetos Iodados , Peróxido de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ferro , Oxigênio , Plasma , Polietileno , Silanos , Soluções , Urina
10.
Adv Mater ; 29(16)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28195666

RESUMO

Polydimethylsiloxane (PDMS) can be grafted to metal-oxide photocatalysts such as titanium oxide by simple UV irradiation in solution or melt. The PDMS graft metal oxides are still photocatalytically active. They are hydrophobic, liquid repellent, self-cleaning, prevent biofouling and are long-term stable even in UV light.

11.
Biointerphases ; 11(3): 031007, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27460261

RESUMO

Super nonfouling surfaces resist protein adhesion and have a broad field of possible applications in implant technology, drug delivery, blood compatible materials, biosensors, and marine coatings. A promising route toward nonfouling surfaces involves liquid repelling architectures. The authors here show that soot-templated super-amphiphobic (SAP) surfaces prepared from fluorinated candle soot structures are super nonfouling. When exposed to bovine serum albumin or blood serum, x-ray photoelectron spectroscopy and time of flight secondary ion mass spectrometry analysis showed that less than 2 ng/cm(2) of protein was adsorbed onto the SAP surfaces. Since a broad variety of substrate shapes can be coated by soot-templated SAP surfaces, those are a promising route toward biocompatible materials design.


Assuntos
Adsorção , Proteínas Sanguíneas/metabolismo , Materiais Revestidos Biocompatíveis/química , Fuligem/química , Propriedades de Superfície , Animais , Bovinos , Humanos , Espectroscopia Fotoeletrônica , Espectrometria de Massa de Íon Secundário
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa