Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 134(1): 44-58, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31076448

RESUMO

In chronic lymphocytic leukemia (CLL), acquired T-cell dysfunction impedes development of effective immunotherapeutic strategies, through as-yet unresolved mechanisms. We have previously shown that CD8+ T cells in CLL exhibit impaired activation and reduced glucose uptake after stimulation. CD8+ T cells in CLL patients are chronically exposed to leukemic B cells, which potentially impacts metabolic homeostasis resulting in aberrant metabolic reprogramming upon stimulation. Here, we report that resting CD8+ T cells in CLL have reduced intracellular glucose transporter 1 (GLUT1) reserves, and have an altered mitochondrial metabolic profile as displayed by increased mitochondrial respiration, membrane potential, and levels of reactive oxygen species. This coincided with decreased levels of peroxisome proliferator-activated receptor γ coactivator 1-α, and in line with that, CLL-derived CD8+ T cells showed impaired mitochondrial biogenesis upon stimulation. In search of a therapeutic correlate of these findings, we analyzed mitochondrial biogenesis in CD19-directed chimeric antigen receptor (CAR) CD8+ T cells prior to infusion in CLL patients (who were enrolled in NCT01747486 and NCT01029366 [https://clinicaltrials.gov]). Interestingly, in cases with a subsequent complete response, the infused CD8+ CAR T cells had increased mitochondrial mass compared with nonresponders, which positively correlated with the expansion and persistence of CAR T cells. Our findings demonstrate that GLUT1 reserves and mitochondrial fitness of CD8+ T cells are impaired in CLL. Therefore, boosting mitochondrial biogenesis in CAR T cells might improve the efficacy of CAR T-cell therapy and other emerging cellular immunotherapies.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Imunoterapia Adotiva , Leucemia Linfocítica Crônica de Células B/metabolismo , Mitocôndrias/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/terapia , Masculino , Pessoa de Meia-Idade , Biogênese de Organelas , Receptores de Antígenos Quiméricos
2.
Blood ; 132(21): 2260-2272, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30213872

RESUMO

The efficacy of autologous (αß) T-cell-based treatment strategies in chronic lymphocytic leukemia (CLL) has been modest. The Vγ9Vδ2-T cell subset consists of cytotoxic T lymphocytes with potent antilymphoma activity via a major histocompatibility complex-independent mechanism. We studied whether Vγ9Vδ2-T cells can be exploited as autologous effector lymphocytes in CLL. Healthy control Vγ9Vδ2-T cells were activated by and had potent cytolytic activity against CLL cells. However, CLL-derived Vγ9Vδ2-T cells proved dysfunctional with respect to effector cytokine production and degranulation, despite an increased frequency of the effector-type subset. Consequently, cytotoxicity against malignant B cells was hampered. A comparable dysfunctional phenotype was observed in healthy Vγ9Vδ2-T cells after coculture with CLL cells, indicating a leukemia-induced mechanism. Gene-expression profiling implicated alterations in synapse formation as a conceivable contributor to compromised Vγ9Vδ2-T-cell function in CLL patients. Dysfunction of Vγ9Vδ2-T cells was fully reversible upon activation with autologous monocyte-derived dendritic cells (moDCs). moDC activation resulted in efficient expansion and predominantly yielded Vγ9Vδ2-T cells with a memory phenotype. Furthermore, ibrutinib treatment promoted an antitumor T helper 1 (TH1) phenotype in Vγ9Vδ2-T cells, and we demonstrated binding of ibrutinib to IL-2-inducible kinase (ITK) in Vγ9Vδ2-T cells. Taken together, CLL-mediated dysfunction of autologous Vγ9Vδ2-T cells is fully reversible, resulting in potent cytotoxicity toward CLL cells. Our data support the potential use of Vγ9Vδ2-T cells as effector T cells in CLL immunotherapy and favor further exploration of combining Vγ9Vδ2-T-cell-based therapy with ibrutinib.


Assuntos
Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/terapia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Linfócitos T Citotóxicos/imunologia , Adenina/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Técnicas de Cocultura , Citocinas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/patologia , Feminino , Humanos , Imunoterapia Adotiva/métodos , Leucemia Linfocítica Crônica de Células B/patologia , Ativação Linfocitária/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Piperidinas , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/patologia , Células Tumorais Cultivadas
4.
Hemasphere ; 4(2): e337, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32309780

RESUMO

Acquired T cell dysfunction is a hallmark of chronic lymphocytic leukemia (CLL), and is linked to an increased risk of infections, but also reduced immune surveillance and disappointing responses to autologous T cell-based immunotherapy. The mechanisms of T cell dysfunction in CLL are not well understood. Studying immunity against chronic viruses allows for detailed analysis of the effect of CLL on T cells chronically exposed to a specific antigen. Cytomegalovirus (CMV) reactivations are rare in CLL, which corroborates with preserved CMV-specific T cell function. Epstein-Barr virus (EBV) is another herpesvirus that results in chronic infection, but unlike CMV, is characterized by subclinical reactivations in CLL patients. Since both herpesviruses induce strong CD8+ T cell responses, but have different clinical outcomes, studying these specific T cells may shed light on the mechanisms of CLL-induced T cell dysfunction. We first analyzed the phenotype of EBV-specific CD8+ T cells in CLL and healthy controls, and found that in CLL EBV-specific CD8+ T cells are in an advanced differentiation state with higher expression of inhibitory receptors. Secondly, CLL-derived EBV-specific CD8+ T cells show reduced cytotoxic potential, in contrast to CMV-specific T cells. Finally, we performed transcriptome analysis to visualize differential modulation by CLL of these T cell subsets. While T cell activation and differentiation genes are unaffected, in EBV-specific T cells expression of genes involved in synapse formation and T cell exhaustion is altered. Our findings on the heterogeneity of antigen specific T cell function in CLL aids in understanding immune-dysregulation in this disease.

5.
Hemasphere ; 3(6): e308, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31976482

RESUMO

Chronic lymphocytic leukemia (CLL) is characterized by an acquired immune dysfunction, which may underlie the hampered efficacy of cellular immunotherapy. Most data on dampened immune responses in CLL come from studies investigating CLL and T cell interactions. Natural killer (NK) cells may be an attractive alternative source of effector cells in immunotherapy in CLL, provided that functionality is retained within the CLL micro-environment. Despite their important role in anti-tumor responses, NK cells are not extensively characterized in CLL. Here, we studied the expression of activating and inhibitory receptors on CLL-derived and healthy control (HC) NK cells, and their functional response towards several stimuli. NK cells from CLL patients have an increased maturation stage, with an expansion of NKG2C+ NK cells in CMV seropositive individuals. The cytotoxicity receptor NKG2D is downregulated, and the killing capacity through this receptor was markedly reduced in CLL-derived NK cells. In contrast, activation via CD16 (FCγRIII) led to adequate activation and functional responses in CLL-derived NK cells. These findings indicate that NK cells in CLL are not intrinsically defect and still perform effector functions upon adequate activating signaling. Clinical relevance of this finding was shown by treatment with novel nanobody-Fc constructs, which induced cytotoxic responses in both CLL- and HC-derived NK cells via CD16. Our results show that NK cells, in contrast to the T cell compartment, retain their function within the CLL micro-environment, provided that they receive an adequate activating signal. These findings warrant future studies on NK cell mediated immunotherapeutic strategies in CLL.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa