RESUMO
The discovery of mirror neurons in the macaque brain in the 1990s triggered investigations on putative human mirror neurons and their potential functionality. The leading proposed function has been action understanding: Accordingly, we understand the actions of others by 'simulating' them in our own motor system through a direct matching of the visual information to our own motor programmes. Furthermore, it has been proposed that this simulation involves the prediction of the sensory consequences of the observed action, similar to the prediction of the sensory consequences of our executed actions. Here, we tested this proposal by quantifying somatosensory attenuation behaviourally during action observation. Somatosensory attenuation manifests during voluntary action and refers to the perception of self-generated touches as less intense than identical externally generated touches because the self-generated touches are predicted from the motor command. Therefore, we reasoned that if an observer simulates the observed action and, thus, he/she predicts its somatosensory consequences, then he/she should attenuate tactile stimuli simultaneously delivered to his/her corresponding body part. In three separate experiments, we found a systematic attenuation of touches during executed self-touch actions, but we found no evidence for attenuation when such actions were observed. Failure to observe somatosensory attenuation during observation of self-touch is not compatible with the hypothesis that the putative human mirror neuron system automatically predicts the sensory consequences of the observed action. In contrast, our findings emphasize a sharp distinction between the motor representations of self and others.
Assuntos
Neurônios-Espelho , Percepção do Tato , Encéfalo , Mapeamento Encefálico , Feminino , Humanos , Masculino , TatoRESUMO
Self-generated touch feels less intense than external touch of the same intensity. According to theory, this is because the brain predicts and attenuates the somatosensory consequences of our movements using a copy of the motor command, i.e., the efference copy. However, whether the efference copy is necessary for this somatosensory attenuation is unclear. Alternatively, a predictable contact of two body parts could be sufficient. Here we quantified the attenuation of touch applied on the participants' left index finger when the touch was triggered by the active or passive movement of the right index finger and when it was externally generated. We observed attenuation only when the touch was triggered by the participants' active movement. In contrast, during the passive movement, the touch was perceived to be as strong as when the touch was externally triggered. Our results suggest that the efference copy is necessary for the attenuation of self-generated touch.