Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomedicine ; 49: 102655, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36681171

RESUMO

Herein, we provide the first description of a synthetic delivery method for self-replicating replicon RNAs (RepRNA) derived from classical swine fever virus (CSFV) using a Coatsome-replicon vehicle based on Coatsome® SS technologies. This results in an unprecedented efficacy when compared to well-established polyplexes, with up to ∼65 fold-increase of the synthesis of RepRNA-encoded gene of interest (GOI). We demonstrated the efficacy of such Coatsome-replicon vehicles for RepRNA-mediated induction of CD8 T-cell responses in mice. Moreover, we provide new insights on physical properties of the RepRNA, showing that the removal of all CSFV structural protein genes has a positive effect on the translation of the GOI. Finally, we successfully engineered RepRNA constructs encoding a porcine reproductive and respiratory syndrome virus (PRRSV) antigen, providing an example of antigen expression with potential application to combat viral diseases. The versatility and simplicity of modifying and manufacturing these Coatsome-replicon vehicle formulations represents a major asset to tackle foreseeable emerging pandemics.


Assuntos
Doenças Transmissíveis , RNA , Suínos , Camundongos , Animais , RNA/genética , Antígenos , Doenças Transmissíveis/genética , Replicon/genética
2.
Nanomedicine ; 12(3): 711-722, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26592962

RESUMO

Self-amplifying replicon RNA (RepRNA) are large molecules (12-14 kb); their self-replication amplifies mRNA template numbers, affording several rounds of antigen production, effectively increasing vaccine antigen payloads. Their sensitivity to RNase-sensitivity and inefficient uptake by dendritic cells (DCs) - absolute requirements for vaccine design - were tackled by condensing RepRNA into synthetic, nanoparticulate, polyethylenimine (PEI)-polyplex delivery vehicles. Polyplex-delivery formulations for small RNA molecules cannot be transferred to RepRNA due to its greater size and complexity; the N:P charge ratio and impact of RepRNA folding would influence polyplex condensation, post-delivery decompaction and the cytosolic release essential for RepRNA translation. Polyplex-formulations proved successful for delivery of RepRNA encoding influenza virus hemagglutinin and nucleocapsid to DCs. Cytosolic translocation was facilitated, leading to RepRNA translation. This efficacy was confirmed in vivo, inducing both humoral and cellular immune responses. Accordingly, this paper describes the first PEI-polyplexes providing efficient delivery of the complex and large, self-amplifying RepRNA vaccines. FROM THE CLINICAL EDITOR: The use of self-amplifying replicon RNA (RepRNA) to increase vaccine antigen payloads can potentially be useful in effective vaccine design. Nonetheless, its use is limited by the degradation during the uptake process. Here, the authors attempted to solve this problem by packaging RepRNA using polyethylenimine (PEI)-polyplex delivery vehicles. The efficacy was confirmed in vivo by the appropriate humoral and cellular immune responses. This novel delivery method may prove to be very useful for future vaccine design.


Assuntos
Antígenos/genética , Polietilenoimina/química , RNA/administração & dosagem , RNA/genética , Replicon , Vacinas/administração & dosagem , Vacinas/genética , Animais , Antígenos/imunologia , Linhagem Celular , Células Dendríticas/imunologia , Imunidade Celular , Imunidade Humoral , Camundongos Endogâmicos BALB C , Biossíntese de Proteínas , RNA/imunologia , RNA/farmacocinética , Suínos , Vacinas/imunologia , Vacinas/farmacocinética
3.
Cytokine ; 74(2): 293-304, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26068648

RESUMO

The P2X(7)R is a functionally distinct member of the P2X family of non-selective cation channels associated with rapid activation of the inflammasome complex and signalling interleukin (IL)-1ß release in macrophages. The main focus of this investigation was to compare P2X(7)R-driven IL-1 production by primary murine bone marrow derived dendritic cells (BMDC) and macrophages (BMM). P2X(7)R expression in murine BMDC and BMM at both transcriptional (P2X(7)A variant) and protein levels was demonstrated. Priming with lipopolysaccharide (LPS) and receptor activation with adenosine triphosphate (ATP) resulted in markedly enhanced IL-1 (α and ß) secretion in BMDC compared with BMM. In both cell types IL-1 production was profoundly inhibited with a P2X(7)R-specific inhibitor (A-740003) demonstrating that this release is predominantly a P2X(7)R-dependent process. These data also suggest that P2X(7)R and caspase-1 activation drive IL-1α release from BMDC. Both cell types expressed constitutively the gain-of-function P2X(7)K as well as the full P2X(7)A variant at equivalent levels. LPS priming reduced significantly levels of P2X(7)A but not P2X(7)K transcripts in both BMDC and BMM. P2X(7)R-induced pore formation, assessed by YO-PRO-1 dye uptake, was greater in BMDC, and these cells were protected from cell death. These data demonstrate that DC and macrophages display distinct patterns of cytokine regulation, particularly with respect to IL-1, as a consequence of cell-type specific differences in the physicochemical properties of the P2X(7)R. Understanding the cell-specific regulation of these cytokines is essential for manipulating such responses in health and disease.


Assuntos
Células da Medula Óssea/imunologia , Células Dendríticas/imunologia , Interleucina-1alfa/imunologia , Interleucina-1beta/imunologia , Macrófagos/imunologia , Receptores Purinérgicos P2X7/imunologia , Animais , Células da Medula Óssea/citologia , Células Dendríticas/citologia , Feminino , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos BALB C
4.
Front Immunol ; 14: 1045183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901231

RESUMO

Dendritic cells (DCs) are mediators between innate and adaptive immunity and vital in initiating and modulating antigen-specific immune responses. The most important site for induction of tolerance is the gut mucosa, where TGF-ß, retinoic acid, and aryl hydrocarbon receptors collaborate in DCs to induce a tolerogenic phenotype. To mimic this, a novel combination of compounds - the synthetic aryl hydrocarbon receptor (AhR) agonist IGN-512 together with TGF-ß and retinoic acid - was developed to create a platform technology for induction of tolerogenic DCs intended for treatment of several conditions caused by unwanted immune activation. These in vitro-generated cells, designated ItolDCs, are phenotypically characterized by their low expression of co-stimulatory and activating molecules along with high expression of tolerance-associated markers such as ILT3, CD103, and LAP, and a weak pro-inflammatory cytokine profile. When co-cultured with T cells and/or B cells, ItolDC-cultures contain higher frequencies of CD25+Foxp3+ regulatory T cells (Tregs), CD49b+LAG3+ 'type 1 regulatory (Tr1) T cells, and IL-10-producing B cells and are less T cell stimulatory compared to cultures with matured DCs. Factor VIII (FVIII) and tetanus toxoid (TT) were used as model antigens to study ItolDC antigen-loading. ItolDCs can take up FVIII, process, and present FVIII peptides on HLA-DR. By loading both ItolDCs and mDCs with TT, antigen-specific T cell proliferation was observed. Cryo-preserved ItolDCs showed a stable tolerogenic phenotype that was maintained after stimulation with LPS, CD40L, or a pro-inflammatory cocktail. Moreover, exposure to other immune cells did not negatively impact ItolDCs' expression of tolerogenic markers. In summary, a novel protocol was developed supporting the generation of a stable population of human DCs in vitro that exhibited a tolerogenic phenotype with an ability to increase proportions of induced regulatory T and B cells in mixed cultures. This protocol has the potential to constitute the base of a tolDC platform for inducing antigen-specific tolerance in disorders caused by undesired antigen-specific immune cell activation.


Assuntos
Tolerância Imunológica , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , Tretinoína/metabolismo , Células Dendríticas , Mucosa
5.
Exp Brain Res ; 221(4): 357-67, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22923263

RESUMO

Peripheral nerve injuries (PNI) are continuing to be an ever-growing socio-economic burden affecting mainly the young working population and the current clinical treatments to PNI provide a poor clinical outcome involving significant loss of sensation. Thus, our understanding of the underlying factors responsible for the extensive loss of the sensory cutaneous subpopulation in the dorsal root ganglia (DRG) that occurs following injury needs to be improved. The current investigations focus in identifying visual cues of mitochondria-related apoptotic events in the various subpopulations of sensory cutaneous neurons. Sensory neuronal subpopulations were identified using FastBlue retrograde labelling following axotomy. Specialised fluorogenic probes, MitoTracker Red and MitoTracker Orange, were employed to visualise the dynamic changes of the mitochondrial population of neurons. The results reveal a fragmented mitochondrial network in sural neurons following apoptosis, whereas a fused elongated mitochondrial population is present in sensory proprioceptive muscle neurons following tibial axotomy. We also demonstrate the neuroprotective properties of NAC and ALCAR therapy in vitro. The dynamic mitochondrial network breaks down following oxidative exposure to hydrogen peroxide (H(2)O(2)), but reinitiates fusion after NAC and ALCAR therapy. In conclusion, this study provides both qualitative and quantitative evidence of the susceptibility of sensory cutaneous sub-population in apoptosis and of the neuroprotective effects of NAC and ALCAR treatment on H(2)O(2)-challenged neurons.


Assuntos
Gânglios Espinais/patologia , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , Degeneração Neural/patologia , Doenças do Sistema Nervoso Periférico/patologia , Células Receptoras Sensoriais/patologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Morte Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Peróxido de Hidrogênio/farmacologia , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/metabolismo , Degeneração Neural/tratamento farmacológico , Degeneração Neural/metabolismo , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/metabolismo , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo
6.
Mol Ther Nucleic Acids ; 12: 118-134, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30195751

RESUMO

Advances in RNA technology during the past two decades have led to the construction of replication-competent RNA, termed replicons, RepRNA, or self-amplifying mRNA, with high potential for vaccine applications. Cytosolic delivery is essential for their translation and self-replication, without infectious progeny generation, providing high levels of antigen expression for inducing humoral and cellular immunity. Synthetic nanoparticle-based delivery vehicles can both protect the RNA molecules and facilitate targeting of dendritic cells-critical for immune defense development. Several cationic lipids were assessed, with RepRNA generated from classical swine fever virus encoding nucleoprotein genes of influenza A virus. The non-cytopathogenic nature of the RNA allowed targeting to dendritic cells without destroying the cells-important for prolonged antigen production and presentation. Certain lipids were more effective at delivery and at promoting translation of RepRNA than others. Selection of particular lipids provided delivery to dendritic cells that resulted in translation, demonstrating that delivery efficiency could not guarantee translation. The observed translation in vitro was reproduced in vivo by inducing immune responses against the encoded influenza virus antigens. Cationic lipid-mediated delivery shows potential for promoting RepRNA vaccine delivery to dendritic cells, particularly when combined with additional delivery elements.

7.
J Control Release ; 266: 256-271, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-28935594

RESUMO

The major limitations with large and complex self-amplifying RNA vaccines (RepRNA) are RNase-sensitivity and inefficient translation in dendritic cells (DCs). Condensing RepRNA with polyethylenimine (PEI) gave positive in vitro readouts, but was largely inferior to virus-like replicon particles (VRP) or direct electroporation. In the present study, we improved such polyplex formulation and determined that fine-tuning of the polyplex structure is essential for ensuring efficacious translation. Thereby, three parameters dominate: (i) PEI molecular weight (MW); (ii) RepRNA:PEI (weight:weight) ratio; and (iii) inclusion of cell penetrating peptides (CPPs). Seven commercially available linear PEIs (MW 2,500-250,000) were classified as strong, intermediate or low for their aptitude at complexing and protecting RepRNA for delivery into porcine blood DCs. Inclusion of (Arg)9 or TAT(57-57) CPPs further modified the translation readouts, but varied for different gene expressions. Dependent on the formulation, translation of the gene of interest (GOI) inserted into the RepRNA (luciferase, or influenza virus hemagglutinin or nucleoprotein) could decrease, while the RepRNA structural gene (E2) translation increased. This was noted in the porcine SK6 cell line, as well as both porcine and, for the first time, human DCs. Two formulations - [Rep/PEI-4,000 (1:3)] and [Rep/PEI-40,000 (1:2)/(Arg)9] were efficacious in vivo in mice and pigs, where specific CD8+ T and CD4+ T-cell responses against the GOI-encoded antigen were observed for the first time. The results demonstrate that different polyplex formulations differ in their interaction with the RepRNA such that only certain genes can be translated. Thus, delivery of these large self-replicating RNA molecules require definition with respect to translation of different genes, rather than just the GOI as is the norm, for identifying optimal delivery for the desired immune activation in vivo.


Assuntos
Polietilenoimina/administração & dosagem , RNA/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Animais , Antígenos/imunologia , Linhagem Celular , Peptídeos Penetradores de Células , Células Dendríticas , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peso Molecular , Ovalbumina/imunologia , Polietilenoimina/química , RNA/química , Ribonuclease H/química , Suínos , Linfócitos T/imunologia , Vacinas Sintéticas/química
8.
Methods Mol Biol ; 1499: 37-75, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27987142

RESUMO

Most current vaccines are either inactivated pathogen-derived or protein/peptide-based, although attenuated and vector vaccines have also been developed. The former induce at best moderate protection, even as multimeric antigen, due to limitations in antigen loads and therefore capacity for inducing robust immune defense. While attenuated and vector vaccines offer advantages through their replicative nature, drawbacks and risks remain with potential reversion to virulence and interference from preexisting immunity. New advances averting these problems are combining self-amplifying replicon RNA (RepRNA) technology with nanotechnology. RepRNA are large self-replicating RNA molecules (12-15 kb) derived from viral genomes defective in at least one structural protein gene. They provide sustained antigen production, effectively increasing vaccine antigen payloads over time, without the risk of producing infectious progeny. The major limitation with RepRNA is RNase-sensitivity and inefficient uptake by dendritic cells (DCs)-absolute requirements for efficacious vaccine design. We employed biodegradable delivery vehicles to protect the RepRNA and promote DC delivery. Encapsulating RepRNA into chitosan nanoparticles, as well as condensing RepRNA with polyethylenimine (PEI), cationic lipids, or chitosans, has proven effective for delivery to DCs and induction of immune responses in vivo.


Assuntos
Células Dendríticas/imunologia , RNA/imunologia , Replicon/imunologia , Vacinas/imunologia , Animais , Sistemas de Liberação de Medicamentos/métodos , Técnicas de Transferência de Genes , Humanos , RNA/genética , Replicon/genética , Vacinas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa