Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 360(6392): 992-997, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29853681

RESUMO

The surface of Pluto is more geologically diverse and dynamic than had been expected, but the role of its tenuous atmosphere in shaping the landscape remains unclear. We describe observations from the New Horizons spacecraft of regularly spaced, linear ridges whose morphology, distribution, and orientation are consistent with being transverse dunes. These are located close to mountainous regions and are orthogonal to nearby wind streaks. We demonstrate that the wavelength of the dunes (~0.4 to 1 kilometer) is best explained by the deposition of sand-sized (~200 to ~300 micrometer) particles of methane ice in moderate winds (<10 meters per second). The undisturbed morphology of the dunes, and relationships with the underlying convective glacial ice, imply that the dunes have formed in the very recent geological past.

2.
Science ; 351(6279): aad8866, 2016 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-26989258

RESUMO

Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Pluto's atmosphere. Whereas the lower atmosphere (at altitudes of less than 200 kilometers) is consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen (N2) dominates the atmosphere (at altitudes of less than 1800 kilometers or so), whereas methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) are abundant minor species and likely feed the production of an extensive haze that encompasses Pluto. The cold upper atmosphere shuts off the anticipated enhanced-Jeans, hydrodynamic-like escape of Pluto's atmosphere to space. It is unclear whether the current state of Pluto's atmosphere is representative of its average state--over seasonal or geologic time scales.

3.
Science ; 351(6279): 1284-93, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26989245

RESUMO

NASA's New Horizons spacecraft has revealed the complex geology of Pluto and Charon. Pluto's encounter hemisphere shows ongoing surface geological activity centered on a vast basin containing a thick layer of volatile ices that appears to be involved in convection and advection, with a crater retention age no greater than ~10 million years. Surrounding terrains show active glacial flow, apparent transport and rotation of large buoyant water-ice crustal blocks, and pitting, the latter likely caused by sublimation erosion and/or collapse. More enigmatic features include tall mounds with central depressions that are conceivably cryovolcanic and ridges with complex bladed textures. Pluto also has ancient cratered terrains up to ~4 billion years old that are extensionally faulted and extensively mantled and perhaps eroded by glacial or other processes. Charon does not appear to be currently active, but experienced major extensional tectonism and resurfacing (probably cryovolcanic) nearly 4 billion years ago. Impact crater populations on Pluto and Charon are not consistent with the steepest impactor size-frequency distributions proposed for the Kuiper belt.

4.
Science ; 330(6003): 468-72, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20966243

RESUMO

As its detached upper-stage launch vehicle collided with the surface, instruments on the trailing Lunar Crater Observation and Sensing Satellite (LCROSS) Shepherding Spacecraft monitored the impact and ejecta. The faint impact flash in visible wavelengths and thermal signature imaged in the mid-infrared together indicate a low-density surface layer. The evolving spectra reveal not only OH within sunlit ejecta but also other volatile species. As the Shepherding Spacecraft approached the surface, it imaged a 25- to-30-meter-diameter crater and evidence of a high-angle ballistic ejecta plume still in the process of returning to the surface--an evolution attributed to the nature of the impactor.


Assuntos
Lua , Meio Ambiente Extraterreno , Hidróxidos
5.
Science ; 330(6003): 463-8, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20966242

RESUMO

Several remote observations have indicated that water ice may be presented in permanently shadowed craters of the Moon. The Lunar Crater Observation and Sensing Satellite (LCROSS) mission was designed to provide direct evidence. On 9 October 2009, a spent Centaur rocket struck the persistently shadowed region within the lunar south pole crater Cabeus, ejecting debris, dust, and vapor. This material was observed by a second "shepherding" spacecraft, which carried nine instruments, including cameras, spectrometers, and a radiometer. Near-infrared absorbance attributed to water vapor and ice and ultraviolet emissions attributable to hydroxyl radicals support the presence of water in the debris. The maximum total water vapor and water ice within the instrument field of view was 155 ± 12 kilograms. Given the estimated total excavated mass of regolith that reached sunlight, and hence was observable, the concentration of water ice in the regolith at the LCROSS impact site is estimated to be 5.6 ± 2.9% by mass. In addition to water, spectral bands of a number of other volatile compounds were observed, including light hydrocarbons, sulfur-bearing species, and carbon dioxide.


Assuntos
Lua , Água , Meio Ambiente Extraterreno , Gelo , Espectroscopia de Luz Próxima ao Infravermelho
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa