Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Ann Neurol ; 94(2): 309-320, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37114466

RESUMO

OBJECTIVE: To investigate the safety and effectiveness of intravenous thrombolysis (IVT) >4.5-9 hours after stroke onset, and the relevance of advanced neuroimaging for patient selection. METHODS: Prospective multicenter cohort study from the ThRombolysis in Ischemic Stroke Patients (TRISP) collaboration. Outcomes were symptomatic intracranial hemorrhage, poor 3-month functional outcome (modified Rankin scale 3-6) and mortality. We compared: (i) IVT >4.5-9 hours versus 0-4.5 hours after stroke onset and (ii) within the >4.5-9 hours group baseline advanced neuroimaging (computed tomography perfusion, magnetic resonance perfusion or magnetic resonance diffusion-weighted imaging fluid-attenuated inversion recovery) versus non-advanced neuroimaging. RESULTS: Of 15,827 patients, 663 (4.2%) received IVT >4.5-9 hours and 15,164 (95.8%) within 4.5 hours after stroke onset. The main baseline characteristics were evenly distributed between both groups. Time of stroke onset was known in 74.9% of patients treated between >4.5 and 9 hours. Using propensity score weighted binary logistic regression analysis (onset-to-treatment time >4.5-9 hours vs onset-to-treatment time 0-4.5 hours), the probability of symptomatic intracranial hemorrhage (ORadjusted 0.80, 95% CI 0.53-1.17), poor functional outcome (ORadjusted 1.01, 95% CI 0.83-1.22), and mortality (ORadjusted 0.80, 95% CI 0.61-1.04) did not differ significantly between both groups. In patients treated between >4.5 and 9 hours, the use of advanced neuroimaging was associated with a 50% lower mortality compared with non-advanced imaging only (9.9% vs 19.7%; ORadjusted 0.51, 95% CI 0.33-0.79). INTERPRETATION: This study showed no evidence in difference of symptomatic intracranial hemorrhage, poor outcome, and mortality in selected stroke patients treated with IVT between >4.5 and 9 hours after stroke onset compared with those treated within 4.5 hours. Advanced neuroimaging for patient selection was associated with lower mortality. ANN NEUROL 2023;94:309-320.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Estudos de Coortes , Estudos Prospectivos , Terapia Trombolítica/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/tratamento farmacológico , Hemorragias Intracranianas/etiologia , AVC Isquêmico/complicações , Resultado do Tratamento , Fibrinolíticos/uso terapêutico , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/complicações
2.
Int J Mol Sci ; 24(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37762198

RESUMO

Modeling chronic cortical demyelination allows the study of long-lasting pathological changes observed in multiple sclerosis such as failure of remyelination, chronically disturbed functions of oligodendrocytes, neurons and astrocytes, brain atrophy and cognitive impairments. We aimed at generating an animal model for studying the consequences of chronic cortical demyelination and meningeal inflammation. To induce long-lasting cortical demyelination and chronic meningeal inflammation, we immunized female Lewis rats against myelin oligodendrocyte glycoprotein (MOG) and injected lentiviruses for continuing overexpression of the cytokines TNFα and IFNγ in the cortical brain parenchyma. Immunization with MOG and overexpression of TNFα and IFNγ led to widespread subpial demyelination and meningeal inflammation that were stable for at least 10 weeks. We demonstrate here that immunization with MOG is necessary for acute as well as chronic cortical demyelination. In addition, long-lasting overexpression of TNFα and IFNγ in the brain parenchyma is sufficient to induce chronic meningeal inflammation. Our model simulates key features of chronic cortical demyelination and inflammation, reminiscent of human multiple sclerosis pathology. This will allow molecular, cellular and functional investigations for a better understanding of the adaptation mechanisms of the cerebral cortex in multiple sclerosis.


Assuntos
Esclerose Múltipla , Fator de Necrose Tumoral alfa , Ratos , Animais , Humanos , Feminino , Ratos Endogâmicos Lew , Fator de Necrose Tumoral alfa/genética , Modelos Animais , Glicoproteína Mielina-Oligodendrócito , Córtex Cerebral , Inflamação
3.
J Neuroinflammation ; 12: 119, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26077779

RESUMO

BACKGROUND: Increasing evidences link T helper 17 (Th17) cells with multiple sclerosis (MS). In this context, interleukin-22 (IL-22), a Th17-linked cytokine, has been implicated in blood brain barrier breakdown and lymphocyte infiltration. Furthermore, polymorphism between MS patients and controls has been recently described in the gene coding for IL-22 binding protein (IL-22BP). Here, we aimed to better characterize IL-22 in the context of MS. METHODS: IL-22 and IL-22BP expressions were assessed by ELISA and qPCR in the following compartments of MS patients and control subjects: (1) the serum, (2) the cerebrospinal fluid, and (3) immune cells of peripheral blood. Identification of the IL-22 receptor subunit, IL-22R1, was performed by immunohistochemistry and immunofluorescence in human brain tissues and human primary astrocytes. The role of IL-22 on human primary astrocytes was evaluated using 7-AAD and annexin V, markers of cell viability and apoptosis, respectively. RESULTS: In a cohort of 141 MS patients and healthy control (HC) subjects, we found that serum levels of IL-22 were significantly higher in relapsing MS patients than in HC but also remitting and progressive MS patients. Monocytes and monocyte-derived dendritic cells contained an enhanced expression of mRNA coding for IL-22BP as compared to HC. Using immunohistochemistry and confocal microscopy, we found that IL-22 and its receptor were detected on astrocytes of brain tissues from both control subjects and MS patients, although in the latter, the expression was higher around blood vessels and in MS plaques. Cytometry-based functional assays revealed that addition of IL-22 improved the survival of human primary astrocytes. Furthermore, tumor necrosis factor α-treated astrocytes had a better long-term survival capacity upon IL-22 co-treatment. This protective effect of IL-22 seemed to be conferred, at least partially, by a decreased apoptosis. CONCLUSIONS: We show that (1) there is a dysregulation in the expression of IL-22 and its antagonist, IL-22BP, in MS patients, (2) IL-22 targets specifically astrocytes in the human brain, and (3) this cytokine confers an increased survival of the latter cells.


Assuntos
Astrócitos/efeitos dos fármacos , Interleucinas/metabolismo , Interleucinas/farmacologia , Esclerose Múltipla/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose/efeitos dos fármacos , Astrócitos/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Estudos de Casos e Controles , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Receptores de Interleucina/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Interleucina 22
4.
Biomedicines ; 10(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35740439

RESUMO

Charcot-Marie-Tooth disease (CMT) is a large group of inherited peripheral neuropathies that are primarily due to demyelination and/or axonal degeneration. CMT type 1A (CMT1A), which is caused by the duplication of the peripheral myelin protein 22 (PMP22) gene, is a demyelinating and the most frequent CMT subtype. Hypermyelination, demyelination, and secondary loss of large-caliber axons are hallmarks of CMT1A, and there is currently no cure and no efficient treatment to alleviate the symptoms of the disease. We previously showed that histone deacetylases 1 and 2 (HDAC1/2) are critical for Schwann cell developmental myelination and remyelination after a sciatic nerve crush lesion. We also demonstrated that a short-term treatment with Theophylline, which is a potent activator of HDAC2, enhances remyelination and functional recovery after a sciatic nerve crush lesion in mice. In the present study, we tested whether Theophylline treatment could also lead to (re)myelination in a PMP22-overexpressing mouse line (C22) modeling CMT1A. Indeed, we show here that a short-term treatment with Theophylline in C22 mice increases the percentage of myelinated large-caliber axons and the expression of the major peripheral myelin protein P0 and induces functional recovery. This pilot study suggests that Theophylline treatment could be beneficial to promote myelination and thereby prevent axonal degeneration and enhance functional recovery in CMT1A patients.

5.
J Neurol ; 269(10): 5405-5419, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35622132

RESUMO

OBJECTIVE: To investigate the prognostic value of white blood cell count (WBC) on functional outcome, mortality and bleeding risk in stroke patients treated with intravenous thrombolysis (IVT). METHODS: In this prospective multicenter study from the TRISP registry, we assessed the association between WBC on admission and 3-month poor outcome (modified Rankin Scale 3-6), mortality and occurrence of symptomatic intracranial hemorrhage (sICH; ECASS-II-criteria) in IVT-treated stroke patients. WBC was used as continuous and categorical variable distinguishing leukocytosis (WBC > 10 × 109/l) and leukopenia (WBC < 4 × 109/l). We calculated unadjusted/ adjusted odds ratios with 95% confidence intervals (OR [95% CI]) with logistic regression models. In a subgroup, we analyzed the association of combined leukocytosis and elevated C-reactive protein (CRP > 10 mg/l) on outcomes. RESULTS: Of 10,813 IVT-treated patients, 2527 had leukocytosis, 112 leukopenia and 8174 normal WBC. Increasing WBC (by 1 × 109/l) predicted poor outcome (ORadjusted 1.04[1.02-1.06]) but not mortality and sICH. Leukocytosis was independently associated with poor outcome (ORadjusted 1.48[1.29-1.69]) and mortality (ORadjusted 1.60[1.35-1.89]) but not with sICH (ORadjusted 1.17[0.94-1.45]). Leukopenia did not predict any outcome. In a subgroup, combined leukocytosis and elevated CRP had the strongest association with poor outcome (ORadjusted 2.26[1.76-2.91]) and mortality (ORadjusted 2.43[1.86-3.16]) when compared to combined normal WBC and CRP. CONCLUSION: In IVT-treated patients, leukocytosis independently predicted poor functional outcome and death. Bleeding complications after IVT were not independently associated with leukocytosis.


Assuntos
Isquemia Encefálica , Leucopenia , Acidente Vascular Cerebral , Trombocitopenia , Isquemia Encefálica/complicações , Fibrinolíticos/efeitos adversos , Humanos , Leucocitose , Leucopenia/complicações , Estudos Prospectivos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/epidemiologia , Terapia Trombolítica/efeitos adversos , Resultado do Tratamento
6.
Artigo em Inglês | MEDLINE | ID: mdl-31882398

RESUMO

OBJECTIVE: To investigate molecular changes in multiple sclerosis (MS) normal-appearing cortical gray matter (NAGM). METHODS: We performed a whole-genome gene expression microarray analysis of human brain autopsy tissues from 64 MS NAGM samples and 42 control gray matter samples. We further examined our cases by HLA genotyping and performed immunohistochemical and immunofluorescent analysis of all human brain tissues. RESULTS: HLA-DRB1 is the transcript with highest expression in MS NAGM with a bimodal distribution among the examined cases. Genotyping revealed that every case with the MS-associated HLA-DR15 haplotype also shows high HLA-DRB1 expression and also of the tightly linked HLA-DRB5 allele. Quantitative immunohistochemical analysis confirmed the higher expression of HLA-DRB1 in HLA-DRB1*15:01 cases at the protein level. Analysis of gray matter lesion size revealed a significant increase of cortical lesion size in cases with high HLA-DRB1 expression. CONCLUSIONS: Our data indicate that increased HLA-DRB1 and -DRB5 expression in the brain of patients with MS may be an important factor in how the HLA-DR15 haplotype contributes to MS pathomechanisms in the target organ.


Assuntos
Substância Cinzenta/metabolismo , Substância Cinzenta/patologia , Subtipos Sorológicos de HLA-DR/genética , Cadeias HLA-DRB1/metabolismo , Cadeias HLA-DRB5/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Idoso , Idoso de 80 Anos ou mais , Autopsia , Feminino , Perfilação da Expressão Gênica , Cadeias HLA-DRB1/genética , Haplótipos , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Análise Serial de Proteínas
7.
Cells ; 8(11)2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726669

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system. Neurological deficits are attributed to inflammatory demyelination, which compromises axonal function and survival. These are mitigated in experimental models by rapid and often complete remyelination of affected axons, but in MS this endogenous repair mechanism frequently fails, leaving axons increasingly vulnerable to the detrimental effects of inflammatory and metabolic stress. Understanding the molecular basis of remyelination and remyelination failure is essential to develop improved therapies for this devastating disease. However, recent studies suggest that this is not due to a single dominant mechanism, but rather represents the biological outcome of multiple changes in the lesion microenvironment that combine to disrupt oligodendrocyte differentiation. This identifies a pressing need to develop technical platforms to investigate combinatory and/or synergistic effects of factors differentially expressed in MS lesions on oligodendrocyte proliferation and differentiation. Here we describe protocols using primary oligodendrocyte cultures from Bl6 mice on 384-well nanofiber plates to model changes affecting oligodendrogenesis and differentiation in the complex signaling environment associated with multiple sclerosis lesions. Using platelet-derived growth factor (PDGF-AA), fibroblast growth factor 2 (FGF2), bone morphogenetic protein 2 (BMP2) and bone morphogenetic protein 4 (BMP4) as representative targets, we demonstrate that we can assess their combinatory effects across a wide range of concentrations in a single experiment. This in vitro model is ideal for assessing the combinatory effects of changes in availability of multiple factors, thus more closely modelling the situation in vivo and furthering high-throughput screening possibilities.


Assuntos
Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/citologia , Cultura Primária de Células/instrumentação , Animais , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Camundongos , Modelos Teóricos , Esclerose Múltipla/terapia , Nanofibras , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Cultura Primária de Células/métodos
8.
Brain Res ; 1641(Pt A): 139-148, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-26423932

RESUMO

Oligodendrocytes, the myelinating glial cells of the central nervous system (CNS), are due to their high specialization and metabolic needs highly vulnerable to various insults. This led to a general view that oligodendrocytes are defenseless victims during brain damage such as occurs in acute and chronic CNS inflammation. However, this view is challenged by increasing evidence that oligodendrocytes are capable of expressing a wide range of immunomodulatory molecules. They express various cytokines and chemokines (e.g. Il-1ß, Il17A, CCL2, CXCL10), antigen presenting molecules (MHC class I and II) and co-stimulatory molecules (e.g. CD9, CD81), complement and complement receptor molecules (e.g. C1s, C2 and C3, C1R), complement regulatory molecules (e.g. CD46, CD55, CD59), tetraspanins (e.g. TSPAN2), neuroimmune regulatory proteins (e.g. CD200, CD47) as well as extracellular matrix proteins (e.g. VCAN) and many others. Their potential immunomodulatory properties can, at specific times and locations, influence ongoing immune processes as shown by numerous publications. Therefore, oligodendrocytes are well capable of immunomodulation, especially during the initiation or resolution of immune processes in which subtle signaling might tip the scale. A better understanding of the immunomodulatory oligodendrocyte can help to invent new, innovative therapeutic interventions in various diseases such as Multiple Sclerosis. This article is part of a Special Issue entitled SI: Myelin Evolution.


Assuntos
Neuroimunomodulação/fisiologia , Oligodendroglia/metabolismo , Animais , Encéfalo/imunologia , Humanos
9.
Cell Rep ; 16(2): 314-322, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27346352

RESUMO

Breakdown of myelin sheaths is a pathological hallmark of several autoimmune diseases of the nervous system. We employed autoantibody-mediated animal models of demyelinating diseases, including a rat model of neuromyelitis optica (NMO), to target myelin and found that myelin lamellae are broken down into vesicular structures at the innermost region of the myelin sheath. We demonstrated that myelin basic proteins (MBP), which form a polymer in between the myelin membrane layers, are targeted in these models. Elevation of intracellular Ca(2+) levels resulted in MBP network disassembly and myelin vesiculation. We propose that the aberrant phase transition of MBP molecules from their cohesive to soluble and non-adhesive state is a mechanism triggering myelin breakdown in NMO and possibly in other demyelinating diseases.


Assuntos
Proteína Básica da Mielina/metabolismo , Bainha de Mielina/patologia , Neuromielite Óptica/metabolismo , Animais , Sinalização do Cálcio , Modelos Animais de Doenças , Neuromielite Óptica/patologia , Ratos Endogâmicos Lew
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa