Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 601(7894): 531-536, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34847568

RESUMO

Quantum many-body systems display rich phase structure in their low-temperature equilibrium states1. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases2-8 that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC)7,9-15. Concretely, dynamical phases can be defined in periodically driven many-body-localized (MBL) systems via the concept of eigenstate order7,16,17. In eigenstate-ordered MBL phases, the entire many-body spectrum exhibits quantum correlations and long-range order, with characteristic signatures in late-time dynamics from all initial states. It is, however, challenging to experimentally distinguish such stable phases from transient phenomena, or from regimes in which the dynamics of a few select states can mask typical behaviour. Here we implement tunable controlled-phase (CPHASE) gates on an array of superconducting qubits to experimentally observe an MBL-DTC and demonstrate its characteristic spatiotemporal response for generic initial states7,9,10. Our work employs a time-reversal protocol to quantify the impact of external decoherence, and leverages quantum typicality to circumvent the exponential cost of densely sampling the eigenspectrum. Furthermore, we locate the phase transition out of the DTC with an experimental finite-size analysis. These results establish a scalable approach to studying non-equilibrium phases of matter on quantum processors.


Assuntos
Temperatura Baixa , Transição de Fase , Termodinâmica
2.
Phys Rev E ; 108(6-2): 065303, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38243510

RESUMO

Sampling a diverse set of high-quality solutions for hard optimization problems is of great practical relevance in many scientific disciplines and applications, such as artificial intelligence and operations research. One of the main open problems is the lack of ergodicity, or mode collapse, for typical stochastic solvers based on Monte Carlo techniques leading to poor generalization or lack of robustness to uncertainties. Currently, there is no universal metric to quantify such performance deficiencies across various solvers. Here, we introduce a new diversity measure for quantifying the number of independent approximate solutions for NP-hard optimization problems. Among others, it allows benchmarking solver performance by a required time-to-diversity (TTD), a generalization of often used time-to-solution (TTS). We illustrate this metric by comparing the sampling power of various quantum annealing strategies. In particular, we show that the inhomogeneous quantum annealing schedules can redistribute and suppress the emergence of topological defects by controlling space-time separated critical fronts, leading to an advantage over standard quantum annealing schedules with respect to both TTS and TTD for finding rare solutions. Using path-integral Monte Carlo simulations for up to 1600 qubits, we demonstrate that nonequilibrium driving of quantum fluctuations, guided by efficient approximate tensor network contractions, can significantly reduce the fraction of hard instances for random frustrated 2D spin glasses with local fields. Specifically, we observe that by creating a class of algorithmic quantum phase transitions, the diversity of solutions can be enhanced by up to 40% with the fraction of hard-to-sample instances reducing by more than 25%.

3.
Phys Rev E ; 104(2-2): 025308, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525633

RESUMO

We devise a deterministic algorithm to efficiently sample high-quality solutions of certain spin-glass systems that encode hard optimization problems. We employ tensor networks to represent the Gibbs distribution of all possible configurations. Using approximate tensor-network contractions, we are able to efficiently map the low-energy spectrum of some quasi-two-dimensional Hamiltonians. We exploit the local nature of the problems to compute spin-glass droplets geometries, which provides a new form of compression of the low-energy spectrum. It naturally extends to sampling, which otherwise, for exact contraction, is #P-complete. In particular, for one of the hardest known problem-classes devised on chimera graphs known as deceptive cluster loops and for up to 2048 spins, we find on the order of 10^{10} degenerate ground states in a single run of our algorithm, computing better solutions than have been reported on some hard instances. Our gradient-free approach could provide new insight into the structure of disordered spin-glass complexes, with ramifications both for machine learning and noisy intermediate-scale quantum devices.

4.
Science ; 374(6574): 1479-1483, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34709938

RESUMO

Interactions in quantum systems can spread initially localized quantum information into the exponentially many degrees of freedom of the entire system. Understanding this process, known as quantum scrambling, is key to resolving several open questions in physics. Here, by measuring the time-dependent evolution and fluctuation of out-of-time-order correlators, we experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor. We engineer quantum circuits that distinguish operator spreading and operator entanglement and experimentally observe their respective signatures. We show that whereas operator spreading is captured by an efficient classical model, operator entanglement in idealized circuits requires exponentially scaled computational resources to simulate. These results open the path to studying complex and practically relevant physical observables with near-term quantum processors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa