Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nature ; 586(7831): 724-729, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057198

RESUMO

Extensive ecosystem restoration is increasingly seen as being central to conserving biodiversity1 and stabilizing the climate of the Earth2. Although ambitious national and global targets have been set, global priority areas that account for spatial variation in benefits and costs have yet to be identified. Here we develop and apply a multicriteria optimization approach that identifies priority areas for restoration across all terrestrial biomes, and estimates their benefits and costs. We find that restoring 15% of converted lands in priority areas could avoid 60% of expected extinctions while sequestering 299 gigatonnes of CO2-30% of the total CO2 increase in the atmosphere since the Industrial Revolution. The inclusion of several biomes is key to achieving multiple benefits. Cost effectiveness can increase up to 13-fold when spatial allocation is optimized using our multicriteria approach, which highlights the importance of spatial planning. Our results confirm the vast potential contributions of restoration to addressing global challenges, while underscoring the necessity of pursuing these goals synergistically.


Assuntos
Ecossistema , Recuperação e Remediação Ambiental/tendências , Cooperação Internacional , Animais , Biodiversidade , Conservação dos Recursos Naturais/economia , Análise Custo-Benefício , Recuperação e Remediação Ambiental/economia , Mapeamento Geográfico , Aquecimento Global/economia , Aquecimento Global/prevenção & controle
2.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131937

RESUMO

Land use is central to addressing sustainability issues, including biodiversity conservation, climate change, food security, poverty alleviation, and sustainable energy. In this paper, we synthesize knowledge accumulated in land system science, the integrated study of terrestrial social-ecological systems, into 10 hard truths that have strong, general, empirical support. These facts help to explain the challenges of achieving sustainability in land use and thus also point toward solutions. The 10 facts are as follows: 1) Meanings and values of land are socially constructed and contested; 2) land systems exhibit complex behaviors with abrupt, hard-to-predict changes; 3) irreversible changes and path dependence are common features of land systems; 4) some land uses have a small footprint but very large impacts; 5) drivers and impacts of land-use change are globally interconnected and spill over to distant locations; 6) humanity lives on a used planet where all land provides benefits to societies; 7) land-use change usually entails trade-offs between different benefits-"win-wins" are thus rare; 8) land tenure and land-use claims are often unclear, overlapping, and contested; 9) the benefits and burdens from land are unequally distributed; and 10) land users have multiple, sometimes conflicting, ideas of what social and environmental justice entails. The facts have implications for governance, but do not provide fixed answers. Instead they constitute a set of core principles which can guide scientists, policy makers, and practitioners toward meeting sustainability challenges in land use.


Assuntos
Agricultura , Conservação dos Recursos Naturais/métodos , Ecossistema , Humanos , Energia Renovável , Mudança Social
3.
Nature ; 553(7686): 73-76, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29258288

RESUMO

Carbon stocks in vegetation have a key role in the climate system. However, the magnitude, patterns and uncertainties of carbon stocks and the effect of land use on the stocks remain poorly quantified. Here we show, using state-of-the-art datasets, that vegetation currently stores around 450 petagrams of carbon. In the hypothetical absence of land use, potential vegetation would store around 916 petagrams of carbon, under current climate conditions. This difference highlights the massive effect of land use on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects (the biomass stock changes induced by land use within the same land cover) contribute 42-47%, but have been underestimated in the literature. Therefore, avoiding deforestation is necessary but not sufficient for mitigation of climate change. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for the mitigation of climate change. Efforts to raise biomass stocks are currently verifiable only in temperate forests, where their potential is limited. By contrast, large uncertainties hinder verification in the tropical forest, where the largest potential is located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement.


Assuntos
Criação de Animais Domésticos , Biomassa , Agricultura Florestal , Florestas , Atividades Humanas , Internacionalidade , Plantas/metabolismo , Animais , Carbono/análise , Sequestro de Carbono , Conservação dos Recursos Naturais/legislação & jurisprudência , Aquecimento Global/legislação & jurisprudência , Aquecimento Global/prevenção & controle , Plantas/química , Árvores/química , Árvores/metabolismo , Clima Tropical , Incerteza
4.
Global Biogeochem Cycles ; 37(8): e2023GB007813, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38439941

RESUMO

Wildfires and land use play a central role in the long-term carbon (C) dynamics of forested ecosystems of the United States. Understanding their linkages with changes in biomass, resource use, and consumption in the context of climate change mitigation is crucial. We reconstruct a long-term C balance of forests in the contiguous U.S. using historical reports, satellite data, and other sources at multiple scales (national scale 1926-2017, regional level 1941-2017) to disentangle the drivers of biomass C stock change. The balance includes removals of forest biomass by fire, by extraction of woody biomass, by forest grazing, and by biomass stock change, their sum representing the net ecosystem productivity (NEP). Nationally, the total forest NEP increased for most of the 20th century, while fire, harvest and grazing reduced total forest stocks on average by 14%, 51%, and 6%, respectively, resulting in a net increase in C stock density of nearly 40%. Recovery from past land-use, plus reductions in wildfires and forest grazing coincide with consistent forest regrowth in the eastern U.S. but associated C stock increases were offset by increased wood harvest. C stock changes across the western U.S. fluctuated, with fire, harvest, and other disturbances (e.g., insects, droughts) reducing stocks on average by 14%, 81%, and 7%, respectively, resulting in a net growth in C stock density of 14%. Although wildfire activities increased in recent decades, harvest was the key driver in the forest C balance in all regions for most of the observed timeframe.

5.
Glob Ecol Biogeogr ; 32(6): 855-866, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38504954

RESUMO

Aim: Land use is the most pervasive driver of biodiversity loss. Predicting its impact on species richness (SR) is often based on indicators of habitat loss. However, the degradation of habitats, especially through land-use intensification, also affects species. Here, we evaluate whether an integrative metric of land-use intensity, the human appropriation of net primary production, is correlated with the decline of SR in used landscapes across the globe. Location: Global. Time period: Present. Major taxa studied: Birds, mammals and amphibians. Methods: Based on species range maps (spatial resolution: 20 km × 20 km) and an area-of-habitat approach, we calibrated a "species-energy model" by correlating the SR of three groups of vertebrates with net primary production and biogeographical covariables in "wilderness" areas (i.e., those where available energy is assumed to be still at pristine levels). We used this model to project the difference between pristine SR and the SR corresponding to the energy remaining in used landscapes (i.e., SR loss expected owing to human energy extraction outside wilderness areas). We validated the projected species loss by comparison with the realized and impending loss reconstructed from habitat conversion and documented by national Red Lists. Results: Species-energy models largely explained landscape-scale variation of mapped SR in wilderness areas (adjusted R 2-values: 0.79-0.93). Model-based projections of SR loss were lower, on average, than reconstructed and documented ones, but the spatial patterns were correlated significantly, with stronger correlation in mammals (Pearson's r = 0.68) than in amphibians (r = 0.60) and birds (r = 0.57). Main conclusions: Our results suggest that the human appropriation of net primary production is a useful indicator of heterotrophic species loss in used landscapes, hence we recommend its inclusion in models based on species-area relationships to improve predictions of land-use-driven biodiversity loss.

9.
Glob Chang Biol ; 28(1): 307-322, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34651392

RESUMO

Land use has greatly transformed Earth's surface. While spatial reconstructions of how the extent of land cover and land-use types have changed during the last century are available, much less information exists about changes in land-use intensity. In particular, global reconstructions that consistently cover land-use intensity across land-use types and ecosystems are missing. We, therefore, lack understanding of how changes in land-use intensity interfere with the natural processes in land systems. To address this research gap, we map land-cover and land-use intensity changes between 1910 and 2010 for 9 points in time. We rely on the indicator framework of human appropriation of net primary production (HANPP) to quantify and map land-use-induced alterations of the carbon flows in ecosystems. We find that, while at the global aggregate level HANPP growth slowed down during the century, the spatial dynamics of changes in HANPP were increasing, with the highest change rates observed in the most recent past. Across all biomes, the importance of changes in land-use areas has declined, with the exception of the tropical biomes. In contrast, increases in land-use intensity became the most important driver of HANPP across all biomes and settings. We conducted uncertainty analyses by modulating input data and assumptions, which indicate that the spatial patterns of land use and potential net primary production are the most critical factors, while spatial allocation rules and uncertainties in overall harvest values play a smaller role. Highlighting the increasing role of land-use intensity compared to changes in the areal extent of land uses, our study supports calls for better integration of the intensity dimension into global analyses and models. On top of that, we provide important empirical input for further analyses of the sustainability of the global land system.


Assuntos
Carbono , Ecossistema , Humanos
10.
J Environ Manage ; 286: 112228, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33677341

RESUMO

Biomass production generates land use impacts in the form of emissions from Forestry and Other Land Use (FOLU), i.e. due to changes in ecosystem carbon stocks. Recently, consumption-based accounting (CBA) approaches have emerged as alternatives to conventional production-based accounts, quantifying FOLU emissions associated with biomass consumption, for example, of particular territories. However, the quantification and allocation of FOLU emissions to individual biomass products, a fundamental part of CBA approaches, is a complex endeavour. Existing studies make diverging methodological choices, which are rarely critically discussed. In this study, we provide a structured overview of existing CBA approaches to estimating FOLU emissions. We cluster the literature in a two-by-two grid, distinguishing the primary element under investigation (impacts of changing consumption patterns in a region vs. impacts of consumption on production landscapes) and the analytical lens (prospective vs retrospective). Further, we identify three distinct dimensions which characterise the way in which different studies allocate FOLU emissions to biomass products: the choice of reference system and the spatial and temporal scales. Finally, we identify three frontiers that require future attention: (1) overcoming structural biases which underestimate FOLU emissions from territories that experienced deforestation in the distant past, (2) explicitly tackling the interdependence of proximate causes and ultimate drivers of land use change, and (3) assessing uncertainties and understanding the effects of land management. In this way, we enable a critical assessment of appropriate methods, support a nuanced interpretation of results from particular approaches as well as enhance the informative value of CBA approaches related to FOLU emissions. Our analysis contributes to discussions on sustainable land use practices with respect to biomass consumption and has implications for informing international climate policy in scenarios where consumption-based approaches are adopted in practice.


Assuntos
Carbono , Ecossistema , Biomassa , Conservação dos Recursos Naturais , Estudos Prospectivos , Estudos Retrospectivos
11.
Glob Chang Biol ; 26(4): 2421-2434, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31958195

RESUMO

The development of appropriate tools to quantify long-term carbon (C) budgets following forest transitions, that is, shifts from deforestation to afforestation, and to identify their drivers are key issues for forging sustainable land-based climate-change mitigation strategies. Here, we develop a new modeling approach, CRAFT (CaRbon Accumulation in ForesTs) based on widely available input data to study the C dynamics in French forests at the regional scale from 1850 to 2015. The model is composed of two interconnected modules which integrate biomass stocks and flows (Module 1) with litter and soil organic C (Module 2) and build upon previously established coupled climate-vegetation models. Our model allows to develop a comprehensive understanding of forest C dynamics by systematically depicting the integrated impact of environmental changes and land use. Model outputs were compared to empirical data of C stocks in forest biomass and soils, available for recent decades from inventories, and to a long-term simulation using a bookkeeping model. The CRAFT model reliably simulates the C dynamics during France's forest transition and reproduces C-fluxes and stocks reported in the forest and soil inventories, in contrast to a widely used bookkeeping model which strictly only depicts C-fluxes due to wood extraction. Model results show that like in several other industrialized countries, a sharp increase in forest biomass and SOC stocks resulted from forest area expansion and, especially after 1960, from tree growth resulting in vegetation thickening (on average 7.8 Mt C/year over the whole period). The difference between the bookkeeping model, 0.3 Mt C/year in 1850 and 21 Mt C/year in 2015, can be attributed to environmental and land management changes. The CRAFT model opens new grounds for better quantifying long-term forest C dynamics and investigating the relative effects of land use, land management, and environmental change.

12.
Proc Natl Acad Sci U S A ; 114(34): 8939-8944, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28028219

RESUMO

Urban expansion often occurs on croplands. However, there is little scientific understanding of how global patterns of future urban expansion will affect the world's cultivated areas. Here, we combine spatially explicit projections of urban expansion with datasets on global croplands and crop yields. Our results show that urban expansion will result in a 1.8-2.4% loss of global croplands by 2030, with substantial regional disparities. About 80% of global cropland loss from urban expansion will take place in Asia and Africa. In both Asia and Africa, much of the cropland that will be lost is more than twice as productive as national averages. Asia will experience the highest absolute loss in cropland, whereas African countries will experience the highest percentage loss of cropland. Globally, the croplands that are likely to be lost were responsible for 3-4% of worldwide crop production in 2000. Urban expansion is expected to take place on cropland that is 1.77 times more productive than the global average. The loss of cropland is likely to be accompanied by other sustainability risks and threatens livelihoods, with diverging characteristics for different megaurban regions. Governance of urban area expansion thus emerges as a key area for securing livelihoods in the agrarian economies of the Global South.


Assuntos
Agricultura/tendências , Produtos Agrícolas/crescimento & desenvolvimento , Previsões , Urbanização/tendências , África , Agricultura/métodos , Ásia , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências , Geografia
13.
For Ecol Manage ; 445: 37-47, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35645457

RESUMO

Forest ecosystems provide a wide variety of ecosystem services to society. In harsh mountain environments, the regulating services of forests are of particular importance. Managing mountain forests for regulating services is a cost- and labor intensive endeavor. Yet, also unmanaged forests regulate the environment. In the context of evidence-based decision making it is thus important to scrutinize if current management recommendations improve the supply of regulating ecosystem services over unmanaged development trajectories. A further issue complicating decision making in the context of regulating ecosystem services is their high sensitivity to climate change. Climate-mediated increases in natural disturbances, for instance, could strongly reduce the supply of regulating services from forests in the future. Given the profound environmental changes expected for the coming decades it remains unclear whether forest management will still be able to significantly control the future trajectories of mountain forest development, or whether the management effect will be superseded by a much stronger climate and disturbance effect. Here, our objectives were (i) to quantify the future regulating service supply from a 6456 ha landscape in the Stubai valley in Tyrol, Austria, and (ii) to assess the relative importance of management, climate, and natural disturbances on the future supply of regulating ecosystem services. We focused our analysis on climate regulation, water regulation, and erosion regulation, and used the landscape simulation model iLand to quantify their development under different climate scenarios and management strategies. Our results show that unmanaged forests are efficient in providing regulating ecosystem services. Both climate regulation and erosion regulation were higher in unmanaged systems compared to managed systems, while water regulation was slightly enhanced by management. Overall, direct effects of climate change had a stronger influence on the future supply of regulating services than management and natural disturbances. The ability of management to control ecosystem service supply decreased sharply with the severity of future climate change. This finding highlights that forest management could be severely stymied in the future if climate change continues to proceed at its current rate. An improved quantitative understanding of the drivers of future ecosystem service supply is needed to more effectively combine targeted management efforts and natural ecosystem dynamics towards sustaining the benefits society derives from forests in a rapidly changing world.

14.
Glob Chang Biol ; 24(4): 1470-1487, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29235213

RESUMO

As the applications of Earth system models (ESMs) move from general climate projections toward questions of mitigation and adaptation, the inclusion of land management practices in these models becomes crucial. We carried out a survey among modeling groups to show an evolution from models able only to deal with land-cover change to more sophisticated approaches that allow also for the partial integration of land management changes. For the longer term a comprehensive land management representation can be anticipated for all major models. To guide the prioritization of implementation, we evaluate ten land management practices-forestry harvest, tree species selection, grazing and mowing harvest, crop harvest, crop species selection, irrigation, wetland drainage, fertilization, tillage, and fire-for (1) their importance on the Earth system, (2) the possibility of implementing them in state-of-the-art ESMs, and (3) availability of required input data. Matching these criteria, we identify "low-hanging fruits" for the inclusion in ESMs, such as basic implementations of crop and forestry harvest and fertilization. We also identify research requirements for specific communities to address the remaining land management practices. Data availability severely hampers modeling the most extensive land management practice, grazing and mowing harvest, and is a limiting factor for a comprehensive implementation of most other practices. Inadequate process understanding hampers even a basic assessment of crop species selection and tillage effects. The need for multiple advanced model structures will be the challenge for a comprehensive implementation of most practices but considerable synergy can be gained using the same structures for different practices. A continuous and closer collaboration of the modeling, Earth observation, and land system science communities is thus required to achieve the inclusion of land management in ESMs.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais/métodos , Planeta Terra , Ecossistema , Modelos Teóricos
15.
Reg Environ Change ; 18(4): 937-950, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31258412

RESUMO

We investigate agroecosystem energy flows in two Upper Austrian regions, the lowland region Sankt Florian and the prealpine region Grünburg, at five time points between 1830 and 2000. Energetic agroecosystem productivity (energy contents of crops, livestock products, and wood per unit area) is compared to different types of energy inputs, i.e., external inputs from society (labor, industrial inputs, and external biomass inputs) and biomass reused from the local agroecosystem (feed, litter, and seeds). Energy transfers between different compartments of the agroecosystem (agricultural land, forest, and livestock) are also quantified. This allows for delineating an agroecosystem energy transition: In the first stage of this transition, i.e., in the nineteenth century, agroecosystem productivity was low (final produce ranged between 14 and 27 GJ/ha/yr), and local biomass reused made up 97% of total energy inputs in both regions (25-61 GJ/ha/yr). In this period, agroecosystem productivity increase was achieved primarily through more recycling of energy flows within the agroecosystems. In the second stage of the agroecosystem energy transition, i.e., after World War II, external energy inputs increased by factors 2.5 (Sankt Florian) and 5.0 (Grünburg), partly replacing local energy transfers. Final produce per area increased by factors 6.1 (Sankt Florian) and 2.9 (Grünburg). The difference in the resulting energy returns on investment (EROI) owes to regional specialization on cropping versus livestock rearing and to increasing market integration. Our results suggest that sustainable land-use intensification may benefit from some regional specialization harnessing local production potentials based on a mix of local and external inputs.

16.
Glob Chang Biol ; 23(4): 1636-1647, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27976453

RESUMO

Increasing food production is essential to meet the future food demand of a growing world population. In light of pressing sustainability challenges such as climate change and the importance of the global livestock system for food security as well as GHG emissions, finding ways to increasing food production sustainably and without increasing competition for food crops is essential. Yet, many unknowns relate to livestock grazing, in particular grazing intensity, an essential variable to assess the sustainability of livestock systems. Here, we explore ecological limits to grazing intensity (GI; i.e. the fraction of net primary production consumed by grazing animals) by analysing the role of seasonality in natural grasslands. We estimate seasonal limitations to GI by combining monthly net primary production data and a map of global livestock distribution with assumptions on the length of nonfavourable periods that can be bridged by livestock (e.g. by browsing dead standing biomass, storage systems or biomass conservation). This allows us to derive a seasonality-limited potential GI, which we compare with the GI prevailing in 2000. We find that GI in 2000 lies below its potential on 39% of the total global natural grasslands, which has a potential for increasing biomass extraction of up to 181 MtC/yr. In contrast, on 61% of the area GI exceeds the potential, made possible by management. Mobilizing this potential could increase milk production by 5%, meat production by 4% or contribute to free up to 2.8 Mio km² of grassland area at the global scale if the numerous socio-ecological constraints can be overcome. We discuss socio-ecological trade-offs, which may reduce the estimated potential considerably and require the establishment of sound monitoring systems and an improved understanding of livestock system's role in the Earth system.


Assuntos
Mudança Climática , Pradaria , Gado , Animais , Biomassa , Ecologia
17.
Glob Chang Biol ; 23(2): 512-533, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27447350

RESUMO

In the light of daunting global sustainability challenges such as climate change, biodiversity loss and food security, improving our understanding of the complex dynamics of the Earth system is crucial. However, large knowledge gaps related to the effects of land management persist, in particular those human-induced changes in terrestrial ecosystems that do not result in land-cover conversions. Here, we review the current state of knowledge of ten common land management activities for their biogeochemical and biophysical impacts, the level of process understanding and data availability. Our review shows that ca. one-tenth of the ice-free land surface is under intense human management, half under medium and one-fifth under extensive management. Based on our review, we cluster these ten management activities into three groups: (i) management activities for which data sets are available, and for which a good knowledge base exists (cropland harvest and irrigation); (ii) management activities for which sufficient knowledge on biogeochemical and biophysical effects exists but robust global data sets are lacking (forest harvest, tree species selection, grazing and mowing harvest, N fertilization); and (iii) land management practices with severe data gaps concomitant with an unsatisfactory level of process understanding (crop species selection, artificial wetland drainage, tillage and fire management and crop residue management, an element of crop harvest). Although we identify multiple impediments to progress, we conclude that the current status of process understanding and data availability is sufficient to advance with incorporating management in, for example, Earth system or dynamic vegetation models in order to provide a systematic assessment of their role in the Earth system. This review contributes to a strategic prioritization of research efforts across multiple disciplines, including land system research, ecological research and Earth system modelling.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Biodiversidade , Ecossistema , Árvores
18.
Proc Natl Acad Sci U S A ; 110(25): 10324-9, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23733940

RESUMO

Global increases in population, consumption, and gross domestic product raise concerns about the sustainability of the current and future use of natural resources. The human appropriation of net primary production (HANPP) provides a useful measure of human intervention into the biosphere. The productive capacity of land is appropriated by harvesting or burning biomass and by converting natural ecosystems to managed lands with lower productivity. This work analyzes trends in HANPP from 1910 to 2005 and finds that although human population has grown fourfold and economic output 17-fold, global HANPP has only doubled. Despite this increase in efficiency, HANPP has still risen from 6.9 Gt of carbon per y in 1910 to 14.8 GtC/y in 2005, i.e., from 13% to 25% of the net primary production of potential vegetation. Biomass harvested per capita and year has slightly declined despite growth in consumption because of a decline in reliance on bioenergy and higher conversion efficiencies of primary biomass to products. The rise in efficiency is overwhelmingly due to increased crop yields, albeit frequently associated with substantial ecological costs, such as fossil energy inputs, soil degradation, and biodiversity loss. If humans can maintain the past trend lines in efficiency gains, we estimate that HANPP might only grow to 27-29% by 2050, but providing large amounts of bioenergy could increase global HANPP to 44%. This result calls for caution in refocusing the energy economy on land-based resources and for strategies that foster the continuation of increases in land-use efficiency without excessively increasing ecological costs of intensification.


Assuntos
Agricultura/tendências , Ciclo do Carbono , Conservação dos Recursos Naturais/tendências , Demografia/tendências , Desenvolvimento Econômico/tendências , Biomassa , Planeta Terra , Ecossistema , Humanos
19.
Proc Natl Acad Sci U S A ; 110(18): 7342-7, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23589873

RESUMO

Rapid economic development in the past century has translated into severe pressures on species survival as a result of increasing land-use change, environmental pollution, and the spread of invasive alien species. However, though the impact of these pressures on biodiversity is substantial, it could be seriously underestimated if population declines of plants and animals lag behind contemporary environmental degradation. Here, we test for such a delay in impact by relating numbers of threatened species appearing on national red lists to historical and contemporary levels of socioeconomic pressures. Across 22 European countries, the proportions of vascular plants, bryophytes, mammals, reptiles, dragonflies, and grasshoppers facing medium-to-high extinction risks are more closely matched to indicators of socioeconomic pressures (i.e., human population density, per capita gross domestic product, and a measure of land use intensity) from the early or mid-, rather than the late, 20th century. We conclude that, irrespective of recent conservation actions, large-scale risks to biodiversity lag considerably behind contemporary levels of socioeconomic pressures. The negative impact of human activities on current biodiversity will not become fully realized until several decades into the future. Mitigating extinction risks might be an even greater challenge if temporal delays mean many threatened species might already be destined toward extinction.


Assuntos
Extinção Biológica , Animais , Espécies em Perigo de Extinção , Europa (Continente) , Humanos , Modelos Biológicos , Análise Multivariada , Fatores Socioeconômicos , Especificidade da Espécie
20.
Glob Environ Change ; 28: 98-108, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25844027

RESUMO

Long-term studies of land system change can help providing insights into the relative importance of underlying drivers of change. Here, we analyze land system change in Germany for the period 1883-2007 to trace the effect of drastic socio-economic and institutional changes on land system dynamics. Germany is an especially interesting case study due to fundamentally changing economic and institutional conditions: the two World Wars, the separation into East and West Germany, the accession to the European Union, and Germany's reunification. We employed the Human Appropriation of Net Primary Production (HANPP) framework to comprehensively study long-term land system dynamics in the context of these events. HANPP quantifies biomass harvests and land-use-related changes in ecosystem productivity. By comparing these flows to the potential productivity of ecosystems, HANPP allows to consistently assess land cover changes as well as changes in land use intensity. Our results show that biomass harvest steadily increased while productivity losses declined from 1883 to 2007, leading to a decline in HANPP from around 75%-65% of the potential productivity. At the same time, decreasing agricultural areas allowed for forest regrowth. Overall, land system change in Germany was surprisingly gradual, indicating high resilience to the drastic socio-economic and institutional shifts that occurred during the last 125 years. We found strikingly similar land system trajectories in East and West Germany during the time of separation (1945-1989), despite the contrasting institutional settings and economic paradigms. Conversely, the German reunification sparked a fundamental and rapid shift in former East Germany's land system, leading to altered levels of production, land use intensity and land use efficiency. Gradual and continuous land use intensification, a result of industrialization and economic optimization of land use, was the dominant trend throughout the observed period, apparently overruling socio-economic framework conditions and land use policies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa