Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 10: 170, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22909381

RESUMO

BACKGROUND: Interferon regulatory factor (IRF)-5 is a transcription factor involved in type I interferon signaling whose germ line variants have been associated with autoimmune pathogenesis. Since relationships have been observed between development of autoimmunity and responsiveness of melanoma to several types of immunotherapy, we tested whether polymorphisms of IRF5 are associated with responsiveness of melanoma to adoptive therapy with tumor infiltrating lymphocytes (TILs). METHODS: 140 TILs were genotyped for four single nucleotide polymorphisms (rs10954213, rs11770589, rs6953165, rs2004640) and one insertion-deletion in the IRF5 gene by sequencing. Gene-expression profile of the TILs, 112 parental melanoma metastases (MM) and 9 cell lines derived from some metastases were assessed by Affymetrix Human Gene ST 1.0 array. RESULTS: Lack of A allele in rs10954213 (G > A) was associated with non-response (p < 0.005). Other polymorphisms in strong linkage disequilibrium with rs10954213 demonstrated similar trends. Genes differentially expressed in vitro between cell lines carrying or not the A allele could be applied to the transcriptional profile of 112 melanoma metastases to predict their responsiveness to therapy, suggesting that IRF5 genotype may influence immune responsiveness by affecting the intrinsic biology of melanoma. CONCLUSIONS: This study is the first to analyze associations between melanoma immune responsiveness and IRF5 polymorphism. The results support a common genetic basis which may underline the development of autoimmunity and melanoma immune responsiveness.


Assuntos
Fatores Reguladores de Interferon/genética , Melanoma/genética , Polimorfismo de Nucleotídeo Único , Sequência de Bases , Primers do DNA , Perfilação da Expressão Gênica , Humanos , Melanoma/patologia , Metástase Neoplásica , Reação em Cadeia da Polimerase
2.
J Diabetes ; 4(3): 238-42, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22151254

RESUMO

BACKGROUND: Recent genome-wide association studies (GWAS) have identified more than 40 common sequence variants associated with type 2 diabetes (T2D). However, the results are not always the same in populations with differing genetic backgrounds. In the present study, we evaluated a hypothesis that a North Asian population living in a geographic area with unusually harsh environmental conditions would develop unique genetic risks. METHODS: A population-based association study was performed with 21 single-nucleotide polymorphisms (SNPs) in nine genes selected according to the results of GWAS conducted in other populations. The study participants included 393 full-heritage Mongolian individuals (177 diagnosed with T2D and 216 matched controls). Genotyping was performed by TaqMan methodology. RESULTS: The strongest association was detected with SNPs located within the potassium channel-coding genes KCNQ1 (highest odds ratio [OR] = 1.92; P = 3.4 × 10(-5) ) and ABCC8 (OR = 1.79; P = 5 × 10(-4) ). Genetic variants identified as strongly influencing the risk of T2D in other populations (e.g. KCNJ11 or TCF7L2) did not show significant association in Mongolia. CONCLUSIONS: The strongest T2D risk-associated SNPs in Mongolians are located within two of three tested potassium channel-coding genes. Accumulated variations in these genes may be related to the exposure to harsh environmental conditions.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença/genética , Canal de Potássio KCNQ1/genética , Polimorfismo de Nucleotídeo Único , Transportadores de Cassetes de Ligação de ATP/genética , Alelos , Frequência do Gene , Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Íntrons/genética , Desequilíbrio de Ligação , Pessoa de Meia-Idade , Mongólia , Canais de Potássio Corretores do Fluxo de Internalização/genética , Receptores de Droga/genética , Fatores de Risco , Receptores de Sulfonilureias
3.
Med Oncol ; 29(5): 3456-61, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22618666

RESUMO

HRAS belongs to the RAS genes superfamily. RAS genes are important players in several human tumors and the single-nucleotide polymorphism rs12628 has been shown to contribute to the risk of bladder, colon, gastrointestinal, oral, and thyroid carcinoma. We hypothesized that this SNP may affect the risk of cutaneous melanoma as well. HRAS gene contains a polymorphic region (rs112587690), a repeated hexanucleotide -GGGCCT- located in intron 1. Three alleles of this region, P1, P2, and P3, have been identified that contain two, three, and four repeats of the hexanucleotide, respectively. We investigated the clinical impact of these polymorphisms in a case-control study. A total of 141 melanoma patients and 118 healthy donors from the North America Caucasian population were screened for rs12628 and rs112587690 polymorphisms. Genotypes were assessed by capillary sequencing or fragment analysis, respectively, and rs12628 CC and rs112587690 P1P1 genotypes significantly associated with increased melanoma risk (OR = 3.83, p = 0.003; OR = 11.3, p = 0.033, respectively), while rs112587690 P1P3 frequency resulted significantly higher in the control group (OR = 0.5, p = 0.017). These results suggest that rs12628 C homozygosis may be considered a potential risk factor for melanoma development in the North American population possibly through the linkage to rs112587690.


Assuntos
Predisposição Genética para Doença/genética , Melanoma/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Cutâneas/genética , Genótipo , Humanos , América do Norte , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Risco , População Branca
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa