Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Histochem Cell Biol ; 150(6): 711-719, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30159784

RESUMO

Phosphate is a common ingredient in many healthy foods but, it is also present in foods containing additives and preservatives. When found in foods, phosphate is absorbed in the intestines and filtered from the blood by the kidneys. Generally, any excess is excreted in the urine. In renal pathologies, however, such as chronic kidney disease, a reduced renal ability to excrete phosphate can result in excess accumulation in the body. This accumulation can be a catalyst for widespread damage to the cellular components, bones, and cardiovascular structures. This in turn can reduce mortality. Because of an incomplete understanding of the mechanism for phosphate homeostasis, and the multiple organ systems that can modulate it, treatment strategies designed to minimize phosphate burden are limited. The Recommended Dietary Allowance (RDA) for phosphorous is around 700 mg/day for adults, but the majority of healthy adult individuals consume far more phosphate (almost double) than the RDA. Studies suggest that low-income populations are particularly at risk for dietary phosphate overload because of the higher amounts of phosphate found in inexpensive, processed foods. Education in nutrition, as well as access to inexpensive healthy food options may reduce risks for excess consumption as well as a wide-range of disorders, ranging from cardiovascular diseases to kidney diseases to tumor formation. Pre-clinical and clinical studies suggest that dietary phosphate overload has toxic and prolonged adverse health effects. Improved regulations for reporting of phosphate concentrations on food labels are necessary so that people can make more informed choices about their diets and phosphate consumption. This is especially the case given the lack of treatments available to mitigate the short and long-term effects of dietary phosphate overload-related toxicity. Phosphate toxicity is quickly becoming a global health concern. Without measures in place to reduce dietary phosphate intake, the conditions associated with phosphate toxicity will likely to cause untold damage to the wellbeing of individuals around the world.


Assuntos
Dieta/efeitos adversos , Saúde Global , Fosfatos/administração & dosagem , Fosfatos/efeitos adversos , Fator de Crescimento de Fibroblastos 23 , Humanos
2.
J Steroid Biochem Mol Biol ; 193: 105400, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31175968

RESUMO

Decreased bone mass and an increased risk of bone fractures become more common with age. This condition is often associated with osteoporosis and is caused by an imbalance of bone resorption and new bone formation. Lifestyle factors that affect the risk of osteoporosis include alcohol, diet, hormones, physical activity, and smoking. Calcium and vitamin D are particularly important for the age-related loss of bone density and skeletal muscle mass, but other minerals, such as magnesium, also have an important role. Here, we summarize how optimal magnesium and vitamin D balance improve health outcomes in the elderly, the role of magnesium and vitamin D on bone formation, and the implications of widespread deficiency of these factors in the United States and worldwide, particularly in the elderly population.


Assuntos
Envelhecimento/metabolismo , Osso e Ossos/metabolismo , Magnésio/metabolismo , Vitamina D/metabolismo , Vitaminas/metabolismo , Animais , Cálcio/metabolismo , Humanos , Osteomalacia , Osteoporose/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa