Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur Arch Psychiatry Clin Neurosci ; 274(3): 559-571, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37087709

RESUMO

Major depressive disorder (MDD) has been related to abnormal amygdala activity during emotional face processing. However, a recent large-scale study (n = 28,638) found no such correlation, which is probably due to the low precision of fMRI measurements. To address this issue, we used simultaneous fMRI and eye-tracking measurements during a commonly employed emotional face recognition task. Eye-tracking provide high-precision data, which can be used to enrich and potentially stabilize fMRI readouts. With the behavioral response, we additionally divided the active task period into a task-related and a free-viewing phase to explore the gaze patterns of MDD patients and healthy controls (HC) and compare their respective neural correlates. Our analysis showed that a mood-congruency attentional bias could be detected in MDD compared to healthy controls during the free-viewing phase but without parallel amygdala disruption. Moreover, the neural correlates of gaze patterns reflected more prefrontal fMRI activity in the free-viewing than the task-related phase. Taken together, spontaneous emotional processing in free viewing might lead to a more pronounced mood-congruency bias in MDD, which indicates that combined fMRI with eye-tracking measurement could be beneficial for our understanding of the underlying psychopathology of MDD in different emotional processing phases.Trial Registration: The BeCOME study is registered on ClinicalTrials (gov: NCT03984084) by the Max Planck Institute of Psychiatry in Munich, Germany.


Assuntos
Transtorno Depressivo Maior , Humanos , Afeto , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/psicologia , Emoções/fisiologia , Tecnologia de Rastreamento Ocular , Imageamento por Ressonância Magnética
2.
Neuropsychopharmacology ; 48(9): 1409-1417, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37069357

RESUMO

Different psychiatric disorders as well as exposure to adverse life events have individually been associated with multiple age-related diseases and mortality. Age acceleration in different epigenetic clocks can serve as biomarker for such risk and could help to disentangle the interplay of psychiatric comorbidity and early adversity on age-related diseases and mortality. We evaluated five epigenetic clocks (Horvath, Hannum, PhenoAge, GrimAge and DunedinPoAm) in a transdiagnostic psychiatric sample using epigenome-wide DNA methylation data from peripheral blood of 429 subjects from two studies at the Max Planck Institute of Psychiatry. Burden of psychiatric disease, represented by a weighted score, was significantly associated with biological age acceleration as measured by GrimAge and DunedinPoAm (R2-adj. 0.22 and 0.33 for GrimAge and DunedinPoAm, respectively), but not the other investigated clocks. The relation of burden of psychiatric disease appeared independent of differences in socioeconomic status and medication. Our findings indicate that increased burden of psychiatric disease may associate with accelerated biological aging. This highlights the importance of medical management of patients with multiple psychiatric comorbidities and the potential usefulness of specific epigenetic clocks for early detection of risk and targeted intervention to reduce mortality in psychiatric patients.


Assuntos
Aceleração , Transtornos Mentais , Humanos , Envelhecimento/genética , Metilação de DNA , Transtornos Mentais/epidemiologia , Transtornos Mentais/genética , Epigênese Genética
3.
Front Neurosci ; 15: 637877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679316

RESUMO

OBJECTIVE: Research on visual working memory has shown that individual stimulus features are processed in both specialized sensory regions and higher cortical areas. Much less evidence exists for auditory working memory. Here, a main distinction has been proposed between the processing of spatial and non-spatial sound features. Our aim was to examine feature-specific activation patterns in auditory working memory. METHODS: We collected fMRI data while 28 healthy adults performed an auditory delayed match-to-sample task. Stimuli were abstract sounds characterized by both spatial and non-spatial information, i.e., interaural time delay and central frequency, respectively. In separate recording blocks, subjects had to memorize either the spatial or non-spatial feature, which had to be compared with a probe sound presented after a short delay. We performed both univariate and multivariate comparisons between spatial and non-spatial task blocks. RESULTS: Processing of spatial sound features elicited a higher activity in a small cluster in the superior parietal lobe than did sound pattern processing, whereas there was no significant activation difference for the opposite contrast. The multivariate analysis was applied using a whole-brain searchlight approach to identify feature-selective processing. The task-relevant auditory feature could be decoded from multiple brain regions including the auditory cortex, posterior temporal cortex, middle occipital gyrus, and extended parietal and frontal regions. CONCLUSION: In summary, the lack of large univariate activation differences between spatial and non-spatial processing could be attributable to the identical stimulation in both tasks. In contrast, the whole-brain multivariate analysis identified feature-specific activation patterns in widespread cortical regions. This suggests that areas beyond the auditory dorsal and ventral streams contribute to working memory processing of auditory stimulus features.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa