Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 118(9): 3499-3510, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33811659

RESUMO

Cell clarification represents a major challenge for the intensification through very high cell density in the production of biopharmaceuticals such as monoclonal antibodies (mAbs). The present report proposes a solution to this challenge in a streamlined process where cell clarification and mAb capture are performed in a single step using magnetic beads coupled with protein A. Capture of mAb from non-clarified CHO cell suspension showed promising results; however, it has not been demonstrated that it can handle the challenge of very high cell density as observed in intensified fed-batch cultures. The performances of magnetic bead-based mAb capture on non-clarified cell suspension from intensified fed-batch culture were studied. Capture from a culture at density larger than 100 × 106 cells/ml provided an adsorption efficiency of 99% and an overall yield of 93% with a logarithmic host cell protein (HCP) clearance of ≈2-3 and a resulting HCP concentration ≤≈5 ppm. These results show that direct capture from very high cell density cell suspension is possible without prior processing. This technology, which brings significant benefits in terms of operational cost reduction and performance improvements such as low HCP, can be a powerful tool alleviating the challenge of process intensification.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Técnicas de Cultura Celular por Lotes , Campos Magnéticos , Animais , Anticorpos Monoclonais/biossíntese , Células CHO , Cricetulus
2.
Langmuir ; 31(37): 10296-302, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26309059

RESUMO

A lab-on-a-chip traveling wave magnetophoresis approach for sensitive and rapid protein detection is reported. In this method, a chip-based magnetic microarray comprising lines of micrometer-sized thin film magnetic elements was used to control the movement of magnetic beads (MBs). The MBs and the chip were functionalized, forming a sandwich-type assay. The MBs were transported across a detection area, and the presence of target molecules resulted in the immobilization of MBs within this area. Target quantification was accomplished by MB counting in the detection area using an optical microscope. In order to demonstrate the versatility of the microarray, biotinylated antiavidin was selected as the target protein. In this case, avidin-functionalized MBs and an avidin-functionalized detection area were used. With a total assay time of 1 to 1.5 h (depending on the labeling approach used), a limit of detection in the attomole range was achieved. Compared to on-chip surface plasmon resonance biodetection systems, our method has a larger dynamic range and is about a factor of 500 times more sensitive. Furthermore, our MB transportation system can operate in any chip-based biosensor platform, thereby significantly improving traditional biosensors.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Analíticas Microfluídicas/métodos , Proteínas/química , Análise Serial de Proteínas , Proteínas/análise
3.
Langmuir ; 28(28): 10318-23, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22746957

RESUMO

A straightforward, versatile approach to the production of protein gradients on planar and spherical particle surfaces is described. The method is based on the spatially controlled oxidation of thiolated surfaces by Au(III) ions generated via the electrochemical oxidation of a gold electrode in a phosphate-buffered saline solution (10 mM PBS, pH 7.2, 150 mM NaCl). Because the gold electrode is in direct contact with the thiolated surfaces, the released Au(III) ions, which are present as Au(III) chloride complexes, give rise to the formation of a surface gradient of Au(I)-thiolate complexes depending on the local redox potential given by the local Au(III) concentration. As is shown on the basis of the use of X-ray photoelectron spectroscopy and fluorescently labeled proteins, the Au(I)-thiolate complexes can subsequently be functionalized with thiolated proteins, yielding surface density protein gradients on micrometer-sized nonconducting polymer beads as well as linear Au(I)-thiolate gradients on planar silicon surfaces.


Assuntos
Técnicas Eletroquímicas , Ouro/química , Material Particulado/química , Proteínas/química , Eletrodos , Oxirredução , Compostos de Sulfidrila/química , Propriedades de Superfície
4.
Lab Chip ; 10(5): 654-61, 2010 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-20162242

RESUMO

A novel method of controlled transport of proteins immobilized on micrometre-sized magnetic beads in a lab-on-a-chip environment is presented. Bead motion is controlled by lithographically made magnetic elements forming transportation lines in combination with an applied in-plane rotating magnetic field. In this way, transport of attomole amounts of proteins is controlled with micrometre precision. Also, the activity of proteins immobilized on the beads is demonstrated by injecting antibodies into the system. A critical step in developing the method was to reduce sticking forces between beads and substrate during transportation of proteins. Charge interaction was found to be of minor importance compared to hydrophobic forces. To achieve a reliable transport of biologically active proteins, both substrate and beads were coated with polyethylene glycol (PEG) and the protein covered beads were suspended in buffer with surfactants. The described system fulfils all the important unit operations of a microfluidic platform and, as a further advantage, presents less need for microchannels and electric wiring.


Assuntos
Magnetismo/instrumentação , Microquímica/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Micromanipulação/instrumentação , Proteínas/química , Proteínas/isolamento & purificação , Desenho de Equipamento , Análise de Falha de Equipamento
5.
Langmuir ; 26(21): 16349-54, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-20973581

RESUMO

With the aim of extending the usefulness of an existing biomimetic catalytic system, cobalt porphyrin catalytic units with thiol linkers were heterogenized via chemical grafting to silicon wafers and utilized for the catalytic oxidation of hydroquinone to p-benzoquinone. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to analyze the morphology and composition of the heterogeneous catalyst. The results of the catalytic oxidation of hydroquinone obtained with porphyrins grafted on silicon were compared with those obtained earlier with the same catalyst in homogeneous phase and immobilized on gold. It was found that the catalysis could run over 400 h, without showing any sign of deactivation. The measured catalytic activity is at least 10 times higher than that measured under homogeneous conditions, but also 10 times lower than that observed with the catalytic unit immobilized on gold. The reasons of this discrepancy are discussed in term of substrate influence and overlayer organization. The silicon-immobilized catalyst has potential as an advanced functional material with applications in oxidative heterogeneous catalysis of organic reactions, as it combines long-term relatively high activity with low cost.


Assuntos
Materiais Biomiméticos/química , Cobalto/química , Ouro/química , Metaloporfirinas/química , Silício/química , Adsorção , Benzoquinonas/química , Materiais Biomiméticos/síntese química , Catálise , Hidroquinonas/química , Metaloporfirinas/síntese química , Estrutura Molecular , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
6.
Biotechnol Prog ; 35(3): e2775, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30629859

RESUMO

High capacity magnetic protein A agarose beads, LOABeads PrtA, were used in the development of a new process for affinity purification of monoclonal antibodies (mAbs) from non-clarified CHO cell broth using a pilot-scale magnetic separator. The LOABeads had a maximum binding capacity of 65 mg/mL and an adsorption capacity of 25-42 mg IgG/mL bead in suspension for an IgG concentration of 1 to 8 g/L. Pilot-scale separation was initially tested in a mAb capture step from 26 L clarified harvest. Small-scale experiments showed that similar mAb adsorptions were obtained in cell broth containing 40 × 106 cells/mL as in clarified supernatant. Two pilot-scale purification runs were then performed on non-clarified cell broth from fed-batch runs of 16 L, where a rapid mAb adsorption ≥96.6% was observed after 1 h. This process using 1 L of magnetic beads had an overall mAb yield of 86% and 16 times concentration factor. After this single protein A capture step, the mAb purity was similar to the one obtained by column chromatography, while the host cell protein content was very low, <10 ppm. Our results showed that this magnetic bead mAb purification process, using a dedicated pilot-scale separation device, was a highly efficient single step, which directly connected the culture to the downstream process without cell clarification. Purification of mAb directly from non-clarified cell broth without cell separation can provide significant savings in terms of resources, operation time, and equipment, compared to legacy procedure of cell separation followed by column chromatography step. © 2019 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2775, 2019.


Assuntos
Anticorpos Monoclonais/metabolismo , Células CHO/metabolismo , Cromatografia de Afinidade/métodos , Magnetismo/métodos , Proteína Estafilocócica A/química , Adsorção , Animais , Anticorpos Monoclonais/química , Cromatografia de Afinidade/instrumentação , Cricetulus , Concentração de Íons de Hidrogênio , Magnetismo/instrumentação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa