Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytopathology ; 114(6): 1366-1372, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38281162

RESUMO

Fruit rot is a fungal disease complex that threatens cranberry yields in North American growing operations. Management of fruit rot is especially difficult because of the diversity of the infecting fungal species, and although infections take place early in the season, the pathogens usually remain latent in the ovary until the fruit ripen. Control methods heavily rely on fungicide applications, a practice that may be limited in viability long term. Breeding for fruit rot resistance (FRR) is essential for sustainable production. It is likely that field resistance is multifaceted and involves a myriad of traits that fortify cranberry plants against the biotic and abiotic stresses contributing to fruit rot. In this study, we identified quantitative trait loci (QTL) for FRR in a segregating population. Interestingly, a QTL associated with resistance was found to overlap with one associated with fruit epicuticular wax (ECW). A single-nucleotide polymorphism genotyping assay successfully identified accessions that exhibit the desired phenotypes (i.e., less rot and more ECW), thus making it a useful tool for marker-assisted selection. Candidate genes that may contribute to FRR and ECW were also identified. This work will expedite breeding for improved cranberry fruit quality.


Assuntos
Resistência à Doença , Frutas , Doenças das Plantas , Locos de Características Quantitativas , Vaccinium macrocarpon , Locos de Características Quantitativas/genética , Vaccinium macrocarpon/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Frutas/microbiologia , Frutas/genética , Resistência à Doença/genética , Ceras , Polimorfismo de Nucleotídeo Único/genética , Fenótipo , Marcadores Genéticos , Genótipo
2.
BMC Plant Biol ; 23(1): 181, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020185

RESUMO

BACKGROUND: As the global climate changes, periods of abiotic stress throughout the North American cranberry growing regions will become more common. One consequence of high temperature extremes and drought conditions is sunscald. Scalding damages the developing berry and reduces yields through fruit tissue damage and/or secondary pathogen infection. Irrigation runs to cool the fruit is the primary approach to controlling sunscald. However, it is water intensive and can increase fungal-incited fruit rot. Epicuticular wax functions as a barrier to various environmental stresses in other fruit crops and may be a promising feature to mitigate sunscald in cranberry. In this study we assessed the function of epicuticular wax in cranberries to attenuate stresses associated with sunscald by subjecting high and low epicuticular wax cranberries to controlled desiccation and light/heat exposure. A cranberry population that segregates for epicuticular wax was phenotyped for epicuticular fruit wax levels and genotyped using GBS. Quantitative trait loci (QTL) analyses of these data identified a locus associated with epicuticular wax phenotype. A SNP marker was developed in the QTL region to be used for marker assisted selection. RESULTS: Cranberries with high epicuticular wax lost less mass percent and maintained a lower surface temperature following heat/light and desiccation experiments as compared to fruit with low wax. QTL analysis identified a marker on chromosome 1 at position 38,782,094 bp associated with the epicuticular wax phenotype. Genotyping assays revealed that cranberry selections homozygous for a selected SNP have consistently high epicuticular wax scores. A candidate gene (GL1-9), associated with epicuticular wax synthesis, was also identified near this QTL region. CONCLUSIONS: Our results suggest that high cranberry epicuticular wax load may help reduce the effects of heat/light and water stress: two primary contributors to sunscald. Further, the molecular marker identified in this study can be used in marker assisted selection to screen cranberry seedlings for the potential to have high fruit epicuticular wax. This work serves to advance the genetic improvement of cranberry crops in the face of global climate change.


Assuntos
Vaccinium macrocarpon , Mapeamento Cromossômico , Frutas/genética , Fenótipo , Locos de Características Quantitativas , Vaccinium macrocarpon/genética , Ceras
3.
Plant Cell Environ ; 45(5): 1573-1583, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35141927

RESUMO

Plant mechanical failure (lodging) causes global yield losses of 7%-66% in cereal crops. We have previously shown that the above-ground nodal roots (brace roots) in maize are critical for anchorage. However, it is unknown how brace root phenotypes vary across genotypes and the functional consequence of this variation. This study quantifies the contribution of brace roots to anchorage, brace root traits, plant height, and root lodging susceptibility in 52 maize inbred lines. We show that the contribution of brace roots to anchorage and root lodging susceptibility varies among genotypes and this contribution can be explained by plant architectural variation. Additionally, supervised machine learning models were developed and show that multiple plant architectural phenotypes can predict the contribution of brace roots to anchorage and root lodging susceptibility. Together these data define the plant architectures that are important in lodging resistance and show that the contribution of brace roots to anchorage is a good proxy for root lodging susceptibility.


Assuntos
Raízes de Plantas , Zea mays , Produtos Agrícolas , Genótipo , Fenótipo , Raízes de Plantas/genética , Zea mays/genética
4.
Ann Bot ; 129(6): 657-668, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35238341

RESUMO

BACKGROUND AND AIMS: Root lodging is responsible for significant crop losses worldwide. During root lodging, roots fail by breaking, buckling or pulling out of the ground. In maize, above-ground roots, called brace roots, have been shown to reduce susceptibility to root lodging. However, the underlying structural-functional properties of brace roots that prevent root lodging are poorly defined. In this study, we quantified structural mechanical properties, geometry and bending moduli for brace roots from different whorls, genotypes and reproductive stages. METHODS: Using 3-point bend tests, we show that brace root mechanics are variable by whorl, genotype and reproductive stage. KEY RESULTS: Generally, we find that within each genotype and reproductive stage, the brace roots from the first whorl (closest to the ground) had higher structural mechanical properties and a lower bending modulus than brace roots from the second whorl. There was additional variation between genotypes and reproductive stages. Specifically, genotypes with higher structural mechanical properties also had a higher bending modulus, and senesced brace roots had lower structural mechanical properties than hydrated brace roots. CONCLUSIONS: Collectively these results highlight the importance of considering whorl-of-origin, genotype and reproductive stage for the quantification of brace root mechanics, which is important for mitigating crop loss due to root mechanical failure.


Assuntos
Raízes de Plantas , Zea mays , Genótipo , Raízes de Plantas/genética , Reprodução , Zea mays/genética
5.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617251

RESUMO

Graft compatibility is the capacity of two plants to form cohesive vascular connections. Tomato and pepper are incompatible graft partners; however, the underlying cause of graft rejection between these two species remains unknown.We diagnosed graft incompatibility between tomato and diverse pepper varieties based on weakened biophysical stability, decreased growth, and persistent cell death using trypan blue and TUNEL assays. Transcriptomic analysis of cell death in the junction was performed using RNA-sequencing, and molecular signatures for incompatible graft response were characterized based on meta-transcriptomic comparisons with other biotic processes.We show that tomato is broadly incompatible with diverse pepper cultivars. These incompatible graft partners activate prolonged transcriptional changes that are highly enriched for defense processes. Amongst these processes was broad NLR upregulation and hypersensitive response. Using transcriptomic datasets for a variety of biotic stress treatments, we identified a significant overlap in the genetic profile of incompatible grafting and plant parasitism. In addition, we found over 1000 genes that are uniquely upregulated in incompatible grafts.Based on NLR overactivity, DNA damage, and prolonged cell death we have determined that tomato and pepper graft incompatibility is likely caused by a form of genetic incompatibility, which triggers a hyperimmune-response.

6.
Front Plant Sci ; 14: 1173023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441173

RESUMO

It has long been recognized that the community of organisms associated with plant roots is a critical component of the phytobiome and can directly or indirectly contribute to the overall health of the plant. The rhizosphere microbial community is influenced by a number of factors including the soil type, the species of plants growing in those soils, and in the case of cultivated plants, the management practices associated with crop production. Vaccinium species, such as highbush blueberry and American cranberry, are woody perennials that grow in sandy, acidic soils with low to moderate levels of organic matter and a paucity of nutrients. When properly maintained, fields planted with these crops remain productive for many years. In some cases, however, yields and fruit quality decline over time, and it is suspected that degenerating soil health and/or changes in the rhizosphere microbiome are contributing factors. Determining the assemblage of bacterial and fungal microorganisms typically associated with the rhizosphere of these crops is a critical first step toward addressing the complex issue of soil health. We hypothesized that since blueberry and cranberry are in the same genus and grow in similar soils, that their associated rhizosphere microbial communities would be similar to each other. We analyzed the eukaryotic (primarily fungal) and bacterial communities from the rhizosphere of representative blueberry and cranberry plants growing in commercial fields in New Jersey. The data presented herein show that while the bacterial communities between the crops is very similar, the fungal communities associated with each crop are quite different. These results provide a framework for examining microbial components that might contribute to the health of Vaccinium spp. crops in New Jersey and other parts of the northeastern U.S.

7.
Appl Plant Sci ; 8(8): e11382, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32995102

RESUMO

Plant mechanical failure, also known as lodging, is the cause of significant and unpredictable yield losses in cereal crops. Lodging occurs in two distinct failure modes-stalk lodging and root lodging. Despite the prevalence and detrimental impact of lodging on crop yields, there is little consensus on how to phenotype plants in the field for lodging resistance and thus breed for mechanically resilient plants. This review provides an overview of field-based mechanical testing approaches to assess stalk and root lodging resistance. These approaches are placed in the context of future perspectives. Best practices and recommendations for acquiring field-based mechanical phenotypes of plants are also presented.

8.
Plant Direct ; 4(11): e00284, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33204937

RESUMO

Mechanical failure, known as lodging, negatively impacts yield and grain quality in crops. Limiting crop loss from lodging requires an understanding of the plant traits that contribute to lodging-resistance. In maize, specialized aerial brace roots are reported to reduce root lodging. However, their direct contribution to plant biomechanics has not been measured. In this manuscript, we use a non-destructive field-based mechanical test on plants before and after the removal of brace roots. This precisely determines the contribution of brace roots to establish a rigid base (i.e. stalk anchorage) that limits plant deflection in maize. These measurements demonstrate that the more brace root whorls that contact the soil, the greater their overall contribution to anchorage, but that the contributions of each whorl to anchorage were not equal. Previous studies demonstrated that the number of nodes that produce brace roots is correlated with flowering time in maize. To determine if flowering time selection alters the brace root contribution to anchorage, a subset of the Hallauer's Tusón tropical population was analyzed. Despite significant variation in flowering time and anchorage, selection neither altered the number of brace root whorls in the soil nor the overall contribution of brace roots to anchorage. These results demonstrate that brace roots provide a rigid base in maize and that the contribution of brace roots to anchorage was not linearly related to flowering time.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa