Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 42(18): 3698-3701, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28914936

RESUMO

We demonstrate phase-matched difference frequency generation in the emerging nonlinear crystal La3Ga5.5Ta0.5O14. Tunable wavelengths between 1.4 and 4.7 µm are generated by using femtosecond sources. We also report on the measurements of the optical damage threshold in the femtosecond regime and on the nonlinear refractive index n2.

2.
Nat Commun ; 14(1): 8421, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110439

RESUMO

High-harmonic generation in solids allows probing and controlling electron dynamics in crystals on few femtosecond timescales, paving the way to lightwave electronics. In the spatial domain, recent advances in the real-space interpretation of high-harmonic emission in solids allows imaging the field-free, static, potential of the valence electrons with picometer resolution. The combination of such extreme spatial and temporal resolutions to measure and control strong-field dynamics in solids at the atomic scale is poised to unlock a new frontier of lightwave electronics. Here, we report a strong intensity-dependent anisotropy in the high-harmonic generation from ReS2 that we attribute to angle-dependent interference of currents from the different atoms in the unit cell. Furthermore, we demonstrate how the laser parameters control the relative contribution of these atoms to the high-harmonic emission. Our findings provide an unprecedented atomic perspective on strong-field dynamics in crystals, revealing key factors to consider in the route towards developing efficient harmonic emitters.

3.
Sci Rep ; 7(1): 7861, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28801622

RESUMO

In linear optics, light fields do not mutually interact in a medium. However, they do mix when their field strength becomes comparable to electron binding energies in the so-called nonlinear optical regime. Such high fields are typically achieved with ultra-short laser pulses containing very broad frequency spectra where their amplitudes and phases are mutually coupled in a convolution process. Here, we describe a regime of nonlinear interactions without mixing of different frequencies. We demonstrate both in theory and experiment how frequency domain nonlinear optics overcomes the shortcomings arising from the convolution in conventional time domain interactions. We generate light fields with previously inaccessible properties by avoiding these uncontrolled couplings. Consequently, arbitrary phase functions are transferred linearly to other frequencies while preserving the general shape of the input spectrum. As a powerful application, we introduce deep UV phase control at 207 nm by using a conventional NIR pulse shaper.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa